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Distinct transcriptomic profiles in children
prior to the appearance of type 1 diabetes-
linked islet autoantibodies and following
enterovirus infection

Jake Lin1,2,3,4,19, Elaheh Moradi1,5,19, Karoliina Salenius 1,19, Suvi Lehtipuro1,
Tomi Häkkinen1, Jutta E. Laiho6, Sami Oikarinen6, Sofia Randelin1,
HemangM. Parikh 7, Jeffrey P. Krischer7, JormaToppari 8,9, Åke Lernmark 10,
Joseph F. Petrosino11, Nadim J. Ajami 11,12, Jin-Xiong She13,
William A. Hagopian 14,15, Marian J. Rewers 16, Richard E. Lloyd11,
Kirsi J. Rautajoki 1 , Heikki Hyöty 6,17 , Matti Nykter 1,18 & the TEDDY
Study Group*

Although the genetic basis and pathogenesis of type 1 diabetes have been
studied extensively, how host responses to environmental factors might
contribute to autoantibody development remains largely unknown. Here, we
use longitudinal blood transcriptome sequencing data to characterize host
responses in children within 12 months prior to the appearance of type 1
diabetes-linked islet autoantibodies, as well as matched control children. We
report that childrenwho present with insulin-specific autoantibodies first have
distinct transcriptional profiles from those who develop GADA autoantibodies
first. In particular, gene dosage-driven expression of GSTM1 is associated with
GADA autoantibody positivity.Moreover, comparedwith controls, we observe
increased monocyte and decreased B cell proportions 9-12 months prior to
autoantibody positivity, especially in children who developed antibodies
against insulin first. Lastly, we show that control children present transcrip-
tional signatures consistent with robust immune responses to enterovirus
infection, whereas children who later developed islet autoimmunity do not.
These findings highlight distinct immune-related transcriptomic differences
between case and control children prior to case progression to islet auto-
immunity and uncover deficient antiviral response in children who later
develop islet autoimmunity.

Type 1 diabetes (T1D) is a chronic disease characterized by immune-
mediated loss of functional pancreatic islet beta cells. It has been
estimated that around 40–50% of the risk of the disease arises from
genetics,while half of this genetic risk links to class I and class II human

leukocyte antigen (HLA) genes. Environmental factors also play an
important role in the pathogenesis and contribute to the rapid
increase in the disease incidence that has occurred during the past
decades. Among them, dietary factors and virus infections have been
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studied widely, but the exact triggers and mechanisms leading to islet
autoimmunity and the subsequent beta cell destruction have still
remained without final confirmation. The appearance of islet auto-
antibodies (IAbs), directed against beta cell antigens insulin (IAA), 65-
kDa isoform of glutamic acid decarboxylase (GADA), insulinoma anti-
gen 2 (IA2A), or zinc transporter 8 (ZnT8A), is the earliest sign of
immune-mediated pathogenesis revealed by indirect immuno-
fluorescence already in 19741,2. The IAbs occur usually long before
clinical T1D is diagnosed and often already during the first years of life.
The mechanisms of the immunological process leading to the
appearance of first IAb (IAb seroconversion) and eventually to the
clinical disease are complex, and it is widely accepted that T1D
pathogenesis has a high degree of disease heterogeneity3.

HLA-DR3-DQ2 and HLA-DR4-DQ8 extended haplotypes
account for the highest genetic risk for T1D. While the appearance
of IAA peaks sharply before one year of age and shows association
with DR4-DQ8 haplotype, the appearance of GADA is more com-
monly associated with HLA-DR3-DQ2 and occurs usually later,
starting to increase during the second year of life and staying at
relatively constant rate thereafter4–7. Other known genetic markers
of the appearance of IAbs include e.g. PTPN22 and INS8,9. In addition,
heightened inflammation and aberrant lipid pathways have been
reported to increase risk10–12.

Recently, the concept of different disease subtypes has
emerged4,13–15. Currently, at the initiation of the autoimmune process,
two major pathways with potentially different etiopathogenesis have
been recognized with either IAA or GADA as the first appearing IAb.
Interestingly, the IAA-first subtype, but not GADA-first, hasbeen shown
to be associated with coxsackievirus B1 (CVB1) infections16, belonging
to enterovirus B (EV-B) species. The recent discovery of these different
disease subtypes opens up new opportunities to understand the het-
erogeneous nature of T1D pathogenesis.

The Environmental Determinants of Diabetes in the Young
(TEDDY) study is among the largest prospective birth cohort
studies9,17 of newborns, evaluating the role of adverse genetic risk
together with environmental factors in the pathogenesis of T1D.
TEDDY established a nested case-control (NCC) design where study
subjects have been extensively characterized with multiple omics
technologies from longitudinal samples, collected during quarterly
visits, and metagenomic sequencing from monthly stool and
plasma samples until islet autoimmunity or T1D onset. The role of
virus infections in the initiation of islet autoimmunity has been
actively studied in TEDDY, and it was recently reported that human
adenovirus (HAdV) and enterovirus (EV) infections, and particularly
prolonged course of EV-B infections, were associatedwith increased
risk of islet autoimmunity18–20.

Earlier studies have characterized the interactions of different
pathways and transcriptional networks prior to the appearance of
IA. Previous blood transcriptomics analyses carried out in children
with HLA-conferred T1D susceptibility have shown that innate
immunity functions, such as the type 1 interferon (IFN) response
signatures are activated prior to IAb seroconversion21–23. Notably
and recently reported in the TEDDY study, age-related genetic
network signatures were identified across islet autoimmunity being
common for both GADA-first and IAA-first subtypes24. The investi-
gators further identified these genetic modular signatures to con-
tain strong enrichments in B- and NK- cell associated transcription
profiles and subsequently, the NK-cell progression signature was
validated using a cohort from the Type 1 Diabetes Prediction and
Prevention (DIPP) study25.

With the whole blood transcriptome sequencing data from
TEDDY longitudinal design, we aim to elucidate temporal changes in
gene expression and immune cell proportions in different autoanti-
body patterns and in EV infections prior to IAb seroconversion.

Results
Characteristics and harmonization of the TEDDY nested
case-control islet autoimmunity cohort
Whole blood samples collected from 418 case-control pairs (1:1) of
children included in the TEDDY Nested Case-Control islet auto-
immunity cohort 1 (NCC1)9,17 were used for whole transcriptome
sequencing. Case children included children who had developed at
least one biochemical IAb during the prospective observation
(positivity was confirmed by two laboratories in at least two con-
secutive samples). One control child who had remained constantly
IAb negative and was matched for biological sex, clinical TEDDY site
and family history with T1D was selected for each case child (Sup-
plementary Data 1a Demographics18,19). Rigorous quality control was
performed at all steps of the data generation (see Methods). For our
analysis, transcriptome data was harmonized with next-generation
sequencing (NGS) virome data, resulting in data from 1693 samples
within 312 NCC1 islet autoimmunity pairs (mean age of IAb ser-
oconversion 727 days), including 140 IAA-first (mean age of IAb
seroconversion 636.1 days; IQR 443–844), 105 GADA-first (mean age
of IAb seroconversion 921.8 days; IQR 658–1258), and 67 other (at
least two of IA2A, GADA or IAA at the same first autoantibody posi-
tive sample, mean age of IAb seroconversion 799.4 days; IQR
550–961), available for analysis (see Methods). To understand the
temporal expression patterns prior to IAb seroconversion, we binned
the NCC1 samples by the sample due month identifier to indicate the
matching time points in the case and matched control children in
relation to three month intervals ranging from time of IAb ser-
oconversion (first autoantibody positive sample) to 12 months prior
(Fig. 1a, Supplementary Data 1b, c).

Prior gene expression patterns are distinct in children with IAA
or GADA seroconversion
Statistical testing was performed at each time interval (see Meth-
ods) to identify an initial set of candidate genes with differential
expression between the cases and controls (adjusted p-value<0.05,
absolute log fold change (|LFC|)>0.5). In the full islet autoimmunity
cohort, this resulted in 18 differentially expressed genes across time
points (Fig. 1b, Supplementary Data 2a). One of these genes (RPS26)
mapped to loci from a prior T1D genome wide association study
(GWAS)26. To address if children with different IAb profiles have
similar trajectories towards seroconversion, we performed the
same analysis for sample groups with GADA or IAA detected as the
first autoantibody. For the GADA-first groupwe identified 181 genes,
of which 4 genes (IKZF3,CDKN1C, RPS26, IL7B)mapped to T1DGWAS
loci (Fig. 1b, Supplementary Data 2b). In the IAA-first group we
identified 36 genes of which no genes mapped to T1D GWAS loci
(Supplementary Data 2c, Fig. 1b). This analysis revealed distinct
trajectories towards seroconversion in these two groups (Fig. 1b) -
both the sets of differentially expressed genes as well as the tem-
poral dynamics of the differential expression were characteristic for
each group (Fig. 1b, c). In the IAA-first cohort, most differentially
expressed genes were detected at 9 months before the IAA ser-
oconversion, while in the GADA-first cohort, most genes were
detected at 12–18 months prior to GADA seroconversion. Adjusted
p-values and LFCs for selected genes and all timepoints for the full
islet autoimmunity NCC1, GADA-first, and IAA-first cohorts are listed
in Supplementary Data 2a–c and expression profiles visualized in
Supplementary Figs. 1–3. Pathway analysis with Enrichr gene set
enrichment analysis27 using all the differentially expressed genes
(Supplementary Data 2) revealed enrichment in complement acti-
vation, in addition to intracellular processes such as cell cycle.
Concordantly, enrichment of the complement cascade and its reg-
ulation was confirmed in plasma proteome data28 from the same
samples (see Methods, Supplementary Data 3).
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Temporal filtering identifies subset of disease relevant genes as
potential biomarkers
Wenarrowed the analysis further by selecting genes that in addition to
statistical significance in a single time point have a temporal expres-
sion alteration only in cases between two consecutive time points (see
Methods). When these additional criteria were applied, 2 genes in the
full islet autoimmunity cohort, 14 genes in GADA-first and 1 gene
(FABP5) in IAA-first remained (Supplementary Figs. 4–7, Supplemen-
tary Data 4). We applied conditional logistic regression (see Methods)
in the NCC1 setting to test the association of the expression of each of

the selected genes with temporal change to islet autoimmunity using
HLAgenotype of the subject as a covariate in themodel (seeMethods).
All of the selected genes remained statistically significant in one or
more time points while 4 of the 17 genes were significant for multiple
time points (Fig. 2a, Supplementary Data 5).

Many of these genes have previously been linked to T1D relevant
biological processes. GSTM1 is an enzyme that detoxifies electrophilic
compounds, including prostaglandins29,30. Frequent deletions in the
gene (frequency 40–60% in European ancestry populations) generate
a null, GSTM1 inactive, genotype31. Previous studies have associated
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GSTM1 null phenotype with a decreased risk of T1D32, while our results
further highlight the potential role of high GSTM1 expression as a risk
factor for GADA-first cases (higher expression associated with a higher
risk to the GADA-first group). To test if observed GSTM1 gene
expression is genetically driven, we quantified the genotype of the
GSTM1 in each sample with available whole genome sequencing data
(see Methods). Analysis confirmed GSTM1 expression regulation
through gene dosage effect (Fig. 2b) as well as risk association for

GADA-first cases at the genotype level (p =0.0045, Fisher’s exact test;
Supplementary Fig. 8).

Other relevant genes include ZBED6 (downregulated in cases in
the full islet autoimmunity at 6 and 12months) and FABP5 (upregulated
in cases in the IAA-first group). Notably, ZBED6 has been demonstrated
to repress IGF233 and has a positive role in the regulation of pancreatic
beta cell survival34. FABP5, a fatty acid binding protein, is known to
modulate inflammation and associates also with monocyte activation
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Fig. 2 | Distinct temporal patterns across selected islet autoimmunity asso-
ciated genes and immune cell types. a Conditional logistic regression analysis for
differentially expressed genes between case and control children in different time
points prior to IAb seroconversion. Associated p-values are indicated by the dot
size and odds ratios (OR) by shades of red (>1, positively associated to islet auto-
immunity NCC1, implying a higher risk for higher gene expression) and blue (<1,
negatively associated to islet autoimmunity NCC1, which can be inferred as the
higher gene expression being protective). P-values are unadjusted due to the nes-
ted case-control setting. b GSTM1 gene dosage effect in the full islet autoimmunity
NCC1 cohort. Genotype is indicated with color: +/+ is for diploid, +/− for hemi-
zygous deletion, and −/− for homozygous deletion. c Line plots covering 0-12
months prior to seroconversion showing the mean temporal differences in islet
autoimmunity NCC1 cases and controls as illustrated by representative genes,
selectedbasedon knownbiological function,ZBED6 (full islet autoimmunityNCC1),

GSTM1 (GADA-first) and FABP5 (IAA-first), with error bar showing the standarderror
of the mean (±sem) and highlighting the significant p-values derived from condi-
tional logistic regression analysis (Supplementary Data 4). Temporal expression
patterns for other genes are shown in Supplementary Figs. 5–7 and their detailed
statistics, including log fold change and adjusted p-value are listed in the Supple-
mentary Data 4. d Conditional logistic regression analysis identifies distinct
immune cell type profiles for the full islet autoimmunity NCC1, GADA-first, and IAA-
first seroconversion sets. IAA-first is shown to havemore aberrant cell type profiles.
The dot size and color have the same meaning as in a. e Using likelihood ratio test
and as shown with ZBED6 (full islet autoimmunity NCC1), GSTM1 (GADA-first) and
FABP5 (IAA-first) models, discrimination performances were consistently improved
with the inclusion of gene, hla, SNPs and virus. Otherputative temporalmarkers are
shown in Supplementary Data 8 and Supplementary Fig. 12.
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in early T1D35–38. The temporal differences of GSTM1, FABP5 and ZBED6
between islet autoimmunity cases and controls from months 0 to 12
are illustrated in Fig. 2c.

Proportions of leukocyte subpopulations are altered prior to
islet autoimmunity
We further extended the analysis from the gene expression levels to
the analysis of relative proportions of different leukocyte subpopula-
tions. After validating the performance with an external dataset (see
methods and Supplementary Fig. 9) we applied gene expression
deconvolution analysis to infer regression coefficients for leukocyte
subpopulations in each sample (Supplementary Fig. 10). Validation
data demonstrates that these coefficients are related to the abundance
of cell types in the sample (Supplementary Fig. 9). Pairwise relation-
ships between inferred cell type proportions are shown in Supple-
mentary Fig. 11. Statistical analysis using a conditional logistic
regression model (see Methods) uncovered different leukocyte pro-
files in case children compared to control children (Fig. 2d), and dis-
tinct differences in the full islet autoimmunity NCC1, GADA-first, and
IAA-first seroconversion cohorts (p-value < 0.01, Supplementary
Data 6). As shown in Fig. 2d, decreased B lymphocyte (B cell) pro-
portionwas associatedwith increased risk of IAb seroconversion in the
full islet autoimmunity cohort across the time course. Decreased B cell
proportion was also observed in GADA-first at 3 months and for IAA-
first children at 6 and 9 months before IAb seroconversion (Fig. 2d,
Supplementary Fig. 10, Supplementary Data 6). In addition, the case
children in the IAA-first and the full islet autoimmunity cohorts had an
elevated monocyte component at 9 and 12 months prior to islet
autoimmunity (Fig. 2d). This is known to be associated with chronic
inflammation39,40. Interestingly, eosinophil cell proportions were
found to be protective in the full islet autoimmunity and GADA-first
patterns in a single timepoint atmonth 12 (full islet autoimmunity 0.59
(0.42–0.84), GADA-first 0.45 (0.25–0.82)). IAA-first cases have more
aberrant leukocyte profiles than GADA-first cases, in relation to their
matched controls, across the cell types responsible for both innate and
adaptive immune responses.

Analysis of stool and plasma virome confirms association
between enterovirus infections and islet autoimmunity
To enable integrative analysis with the virus infections, we first rea-
nalyzed the NGS virome data from the matching stool18 and plasma
samples and refined the specificity of the virome results by performing
viral capsid based virus genotyping focusing on EV and human ade-
novirus (HAdV) species41 (see Methods). Consistent with previously
reported results18,19, we found a significant risk association of CVB
group EV infections (HLA adjusted) with the appearance of the islet
autoimmunity NCC1 (OR 1.80 (1.33–2.43)), IAA-first (OR 1.79
(1.07–2.99)) and GADA-first (OR 1.71 (1.14–2.57)). For all EV infections
and consistent with prior TEDDY results, we detected an OR (HLA
adjusted) of 1.31 (1.15–1.73) for full islet autoimmunity NCC1, OR of 1.49
(1.03–2.14) for IAA-first and OR of 1.30 (0.98–1.71) for GADA-first.
Interestingly, after excluding CVB infections from all EV infections, we
found insignificant ORs (HLA adjusted) of 1.15 (0.84–1.58) for full islet
autoimmunity NCC1, 1.14 (0.67–1.93) for IAA-first, and 0.92 (0.58–1.44)
for GADA-first. Additional viromemodel statistical details are shown in
Supplementary Data 7).

Expression markers enable improved stratification of islet
autoimmunity outcomes into IAA-first and GADA-first
autoantibody patterns
To evaluate if host transcriptome can contribute to patient stratifica-
tion on top of the previously established markers7, we constructed
logistic regression models using above mentioned genetic markers
and viral infections, and the transcriptomic markers identified in our
discovery analysis.We further quantified themodel performanceusing

likelihood ratio test p-value and demonstrated that the prediction is
improved with inclusion of transcriptomic markers and viruses, con-
sistently acrossmonths (3, 6, 9 and 12) prior to IAbs conversion. Along
with HLA, PTPN22 and INS SNP markers reported in a prior TEDDY
study7 we found improvements in model prediction, confirmed by
comparing likelihood ratio tests on all relevant timepoints, after
incorporation of EV and HAdV infections with the selected genes
across islet autoimmunity NCC1 (2 genes), GADA-first (14 genes) and
IAA-first (1 gene) conversions (Fig. 2e, Supplementary Data 8, Supple-
mentary Fig. 12). This demonstrates that incorporation of these tran-
scriptomic markers have power to improve the stratification of
children beyond the established genetic and environmental markers.

A robust host immune response to enterovirus infection is
observed in children who do not develop islet autoimmunity
The possible contribution of virus-induced host responses to the
initiation of islet autoimmunity is not known. To address this, we
extended our analysis to study transcriptome differences between
case and control children in the full islet autoimmunity cohort from
sample pairs collected before and after infections by different EV and
HAdV types. To identify virus induced genes, we performed integra-
tion with virome data and tested for differentially expressed genes at
the initial virus infections (first EV or HAdV infection in the child),
diagnosed by detecting virus genome sequences in stool or plasma,
with the closest prior infection-free transcriptome of the same child
(see Methods). In this setting, for EV, our data set yielded 44 cases
(including 9 EV detections from plasma) and 13 control children
(including 5 EV detections from plasma) with available transcriptome
data before and after EV infection (EV+). Subject and infection details,
including HLA, infection age and selected EV-B strain infection states,
are listed in Supplementary Data 9. For HAdV, our data yielded 88 islet
autoimmunity cases and 83 control sample pairs with available tran-
scriptome data before and after HAdV infection (HAdV+).

By statistical testing (DESeq2 adjusted p-value < 0.05,|LFC|>1) we
detected 37 differentially expressed enterovirus induced genes in the
control children and none in case children (Fig. 3a, b, Supplementary
Data 10 (sorted by LFC)). Notably, all the differentially expressed genes
were upregulated, including the chemokine ligand CXCL10 genewhich
has been reported tobe upregulatedduring EV infections inpancreatic
islets42–44. Supportive results were obtained for the genes with
matching proteome plasma data available (C2, SERPING1; see Meth-
ods) (Supplementary Fig. 13). Notably, 70% (26/37) of the genes
upregulated upon EV infections in control children belonged to the
innate immunity system pathway45,46. In addition, based on DAVID
gene set enrichment analysis test47 these upregulated genes are
involved in positive regulation of immune response and antiviral
response (enriched pathways (adjusted p-value < 0.05, minimum of 3
genes), Supplementary Data 11a). In parallel analysis using HAdV
infections, induction of only a single differentially expressed genewith
|LFC|>1, PI3, a known pathogen inhibitor48,49 was detected from 83
control samples and no genes with |LFC|>1 from 88 case pairs (Sup-
plementary Data 12). We also refined the HAdV analysis for HAdV-F,
reported as a T1D islet autoimmunity risk18, anddetected nogeneswith
|LFC|>1 (Supplementary Data 12).

We further confirmed our observation of EV response by
excluding the |LFC|>1 criteria from the analysis, leading to an extended
set of 483 genes (of which 368 were upregulated) in control children
and 28 genes (of which 16 were upregulated) in cases (adjusted p-
value < 0.05, Supplementary Fig. 14, Supplementary Data 10a cases,
10b controls). Processes related to positive regulation of immune
response, interferon signaling, and viral response were enriched in
controls, whereas enrichment to certain developmental processes and
chemokine ligand interaction was detected in cases (Supplementary
Data 11b, c). In contrast, for HAdV, we detected 2680 genes from the
control children (Supplementary Data 11b), 1541 of which were
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Fig. 3 | Multi-omics analysis reveals differences in antiviral response between
case and control children prior to islet autoimmunity. a 37 differentially
expressed (DESeq2 adjusted p <0.05, |LFC|>1) genes (DEGs) were detected in
control children when comparing between samples prior and after enterovirus
infection (EV+). All detected genes were upregulated after infection. Among islet
autoimmunity NCC1 cases no DEGs were detected. 26 of the genes detected from
control, indicated with +, are linked to the innate immunity (Welsh paired T-test, p-
value 7.01e−06), suggesting a clear innate immune response in controls. Heatmap
visualizes the individual LFCs of gene expression. b Distribution of LFCs for the
genes in Fig. 3a (two-sided Wilcoxon rank sum test). c The EV infections related
differences in estimated cell type proportions for cases and controls. Neutrophil
proportions increase upon EV infection. In controls, monocyte proportions tend to
increase while CD8+ T cell proportions decrease upon EV infection. Conditional

logistic regression results in Supplementary Data 14. Correlation map between
different immune cell types in controls (d, Supplementary Data 13a) and cases
(e, Supplementary Data 13b) based on the samples taken before and after EV
infection. The rows and columns correspond to the cell types. In the upper triangle,
circle color and size indicate the Pearson correlation coefficient and the lower
triangle shows the exact values. f Correlation map of seroconverted cases parti-
tioned by strength of immune response (high, medium, low) upon EV infections
and host inflammation episodes. The low responders, partitioned on the right, are
found to be correlated with coxsackievirus B (CVB) but not coxsackievirus A (CVA)
and human adenovirus F (HAdV F). Circle color and size indicate the associated
Pearson correlation coefficient and coefficients with p-value > 0.05 are crossed
over. For boxes in b&c: center lines, median; box limits, upper and lower quartiles;
whiskers, values within 1.5 × IQR of the top and bottom quartiles.
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upregulated. Only 150 differentially expressed genes (Supplementary
Data 12) were detected from the HAdV+ cases, of which 44 were
upregulated. Thus, unlike with EV+ data, enrichment for upregulation
was not observed (p-value 0.25).

Altered leukocyte proportions upon enterovirus infection
support robust immune response in control children
Interestingly, neutrophil-related and cytokine-induced responses were
enriched during EV infection in both case and control children (Fig. 3c
and Supplementary Data 11). This is supported by the trend of
increased proportion of neutrophils in the blood upon infection
(Fig. 3c) and their positive correlation with the upregulated genes
especially among controls (Supplementary Fig. 15). Viral infection
related neutrophil profiles negatively correlated with CD4+ T cell
(−0.67 in cases, −0.78 in controls) and B cell (−0.67 in case, −0.87 in
controls) profiles in both cases and controls, but the negative corre-
lation between neutrophils and CD8+ T cells was detected only in
controls (−0.66 in controls, −0.13 in cases) (Fig. 3d, e). Neutrophils and
CD8+T cells were also negatively correlated both in cases and controls
uponHAdV (−0.48 in controls, −0.45 in cases) (Supplementary Fig. 16a,
b), thus differentiating EV+ case patterns from the others. Similarly,
CD4+ and CD8+ T cells were positively correlated only in EV+ controls
(correlation coefficient 0.41) (Fig. 3d, Supplementary Fig. 16a) but not
in EV+ cases or after HAdV infection (Fig. 3e, Supplementary Fig. 16b).
Furthermore, an increased proportion of monocytes, with mild sig-
nificance (p =0.07, Supplementary Data 14), and positive correlation
between neutrophil and monocyte proportions were only detected
among controls upon EV infection (correlation coefficient 0.66 in
controls (Fig. 3d, Supplementary Data 13a), 0.05 in cases (Fig. 3e,
Supplementary Data 13b)). A similar albeit weaker positive correlation
was observed both in cases and controls upon HAdV (0.19 in controls,
0.18 in cases) (Supplementary Fig. 16a, b), thus showing a clear dif-
ference between cases and controls only in EV infection. Reduced
correlationbetweenRNAandprotein levelsof immune responsegenes
C2 and SERPING1 was also observed in EV+ cases (Spearman ⍴ =0.05
and ⍴ =0.07 for C2 and SERPING1, respectively), in relation to controls
(Spearman ⍴ =0.50 and ⍴ = 0.59 for C2 and SERPING1, respectively),
further supporting the robust properly regulated host response to EVs
among control children (Supplementary Fig. 13).

To gain insight into the variability of EV-induced responses in case
children we partitioned the case samples further into distinct clusters
based on expression profiles and performed correlation analysis (see
Methods) with inflammatory episodes (fever, respiratory and gastro-
intestinal) and virome infections. We found that a subset of islet
autoimmunity cases (7/38 samples, partitioned as the right cluster
shown in Fig. 3a), representing a negative immune response, were
positive only for CVB group EVs (types CVB2, CVB3, and CVB5), while
the other islet autoimmunity cases were infected by a broader selec-
tion of EV types (Fig. 3f).

Overall, the results suggest that there is a clear and consistent
immune responseuponEV infections in autoantibody negative control
children. This response is statistically distinct from the more diverse
and aberrant response detected in children developing autoimmunity
with observed differenceswith respect tomonocytes, neutrophils, and
CD8+ T cells.

Discussion
In this study, we detected distinct temporal gene expression patterns
and immune cell type proportions between islet autoimmunity cases
and matched control children prior to the onset of the islet auto-
immunity. Moreover, these differences were distinct in children with
different types of IAbs. Our gene expression and cell type deconvo-
lution data originates from whole blood samples. Even though blood
samples can not fully recapitulate the disease processes taking place in

the pancreas they can serve as a non-invasive source for marker ana-
lysis and allows us to obtain information about the immune processes,
potentially prior to the detection of islet autoimmunity in pancreatic
samples. For example, the decrease of blood B cell proportion can also
reflect increased cell recruitment to the pancreas or other inflamed
tissues. The systemic nature of immune responses and the demon-
strated ability to detect them from the blood supports analysis in this
setting.

The discovery of T1D subtypes supports the heterogeneity of
disease pathogenesis and offers completely new opportunities to
dissect the mechanisms leading to T1D. From the histological point of
view, distinct subtypes can be identified based on the pattern of
immune cells that infiltrate the pancreatic islets, correlating with the
age at diagnosis of T1D50,51. In this study we focused on the subtypes
that were previously identified by characterizing the autoantigen
specificity of the first-appearing IAb (either IAA or GADA)7. Based on
our results, abnormalities in the function of the immune system
emerge already long (9–12 months) before IAbs appear. Additionally,
the immune cell type proportions clearly differed in the two main
subtypes of islet autoimmunity, characterized by the IAA-first and
GADA-first autoantibody patterns: there were more DE genes in the
GADA-first than other groups and they were predominantly detected
at 12 months, whereas most DE genes in IAA-first group were detected
at 9 month. A similar pattern was detected for the genes in the con-
ditional logistic regression analysis: we detected more significant
transcriptomic changes in GADA-first children (14 genes) compared to
IAA-first children (1 gene), and the associations mostly came from the
window of 12 months prior to GADA seroconversion (also recently
reported in ref. 24). In addition to gene expression changes, the pat-
terns in cell type proportions were different for IAA-first and GADA-
first. These findings emphasize the importance of these two subtypes
as markers of two different pathogenetic pathways that can lead to
islet autoimmunity and T1D.

The expression of FABP5, the fatty acid binding protein, was
associated with increased risk of IAA-first (gene+HLA+SNPs, months 9
[OR 7.17 (1.40–36.52) p-value 0.02] and 12 [OR 2.70 (1.06–6.87) p-value
0.04] prior to seroconversion) but not GADA-first, being in line with
previous report of the FABP5 expression52. FABP5 also has anti-
inflammatory properties36,38 and it contributes to the function of
CD8+ tissue resident memory T cells regulating the pathogenesis of
viral infections53,54. Our results suggest that the IAA associated auto-
immune process may be different from GADA associated process, as
cited previously in TEDDY and other studies11,16,18,55.

We also reported a lowered islet autoimmunity risk in the full islet
autoimmunity NCC1 (OR 0.59 (0.42–0.84) and GADA-first (OR 0.45
(0.25–0.82)) with higher eosinophil proportions at 12 months prior to
islet autoimmunity. Biological significance of this finding is not known.
Theoretically, it could reflect an increase in early age infections, par-
ticularly in parasitic infections, or it may be a reflection of an altered
function of the immune system as seen e.g. in certain allergic diseases.
Further studies are needed to find out whether this phenomenon
reflects the activation of immune pathways that are induced by com-
mon infections and which may protect against islet autoimmunity56.
Additionally, we found that the relative proportion of monocytes was
increased especially in the IAA-first cohort (at 12 and 9 months), and
decreasedB cell proportionswereassociatedwith different timepoints
prior to GADA (3 months) or IAA-first (6 and 9 months) islet auto-
immunity. All these results indicateddifferences in the development of
GADA or IAA-related autoimmunity while uncovering markers and
targets for furthermechanistic studies dissecting the etiopathogenesis
of these two main T1D subtypes.

Another striking finding was related to the GSTM1 expression.
GSTM1 heterozygosity has been linked to T1D32. We observed a
bimodal distribution in GSTM1 expression and higher expression
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associated with a higher risk to GADA-first islet autoimmunity. We
confirmed that this observed expression is attributed to the genetic
alteration at the loci. This is consistent with a previous report showing
that wild-type GSTM1 is a risk factor for T1D, especially for cases with
disease onset at the age of 14–20 years32. In addition, GSTM1 poly-
morphism regulates the susceptibility to many viral infections,
including e.g. chronic hepatitis B, severe COVID-19, tick-borne ence-
phalitis and human papillomavirus infections57–60.

Very few studies have reported transcriptomic differences within
the context of islet autoimmunity and particularly multiple timepoints
prior to the detection of IAbs. Recently and also within the TEDDY
community, microarray based transcriptional signatures of enrichment
of NK cells24 and heightened inflammation along with irregular lipid
metabolism11 were found to be associatedwith islet autoimmunity while
enrichment of B cells was seen in control children24. This aligns with our
and previous findings of more robust immune responses61 in the con-
trol children upon the initial EV infection, as well as with significant
associations in decreased B cell proportions across IAb patterns (IAA-
first and GADA-first) and timepoints. The integration of genetics with
time-dependent transcriptomics, virome and immune cell type altera-
tions prior to IAb seroconversion consistently outperformed sparser
models suggesting that these integrated models may help to identify
pathogenetic pathways. In addition, thesemodels pave theway towards
development of more accurate assays for early detection and eventual
prevention of pathogenic processes leading to T1D.

Our findings confirm the previously documented association
between EV-B infections and initiation of islet autoimmunity in TEDDY
children18. In the present studywe used a bioinformatic pipeline, based
on Vipie62, which can identify various viral taxa by assembling complex
metagenomic sequence data and comparing it to reference sequences
available in public databases. Moreover and further described within
methods, this pipeline is optimized to identify viral subtypes (e.g. EV
genotypes) using only those sequence reads that map to the genome
region that codes the viral capsid proteins that include the viral sub-
type determinants. Thus, the fact this method again found CVB group
viruses associated with islet autoimmunity supports the robustness of
this finding.

Furthermore, when we analyzed sample pairs collected before
and after infections by different EV types, we detected clear immune
responses to EV infections in the islet autoimmunity negative control
children, represented by an enrichment in upregulated innate
immunity genes, while the response in islet autoimmunity positive
case children was more variable. Thus, a robust antiviral response
against EV may be a protective factor for islet autoimmunity, being
present especially among children who did not develop islet auto-
immunity later on. The mechanism of this protection is not known
but it could be related to better immune defense against diabeto-
genic viruses. This is consistent with the observed association
between EV infections and later development of islet autoimmunity
in the TEDDY study18 and in other studies19,63. Interestingly, the recent
observation from the TEDDY study18 showed that islet autoimmunity-
associated EV infections were atypically prolonged. Thus, it is pos-
sible that the weak immune responsiveness to the virus may con-
tribute to this phenomenon leading to delayed eradication of the
virus. We also found that increased monocyte proportions, which
can be caused by chronic or subacute infections, were associated
with islet autoimmunity both in the full islet autoimmunity and IAA-
first cohorts. A less pronounced immune response to EVs in islet
autoimmunity cases was supported by HAdV analysis. For both
viruses, less differentially expressed genes were detected in case
children compared to control children, however, the difference was
considerably more pronounced with EV infection.

In conclusion, our study showed immune related transcriptomic
differences between case and control children prior to islet auto-
immunity. This phenomenon is presented differently in children with

either IAA or GADA as the first appearing IAbs. We also found that EV
infections induce less robust antiviral response in children who later
develop islet autoimmunity as compared to control children.

Methods
Sample processing and sequencing
Whole blood samples collected from children included in the
TEDDY NCC1 islet autoimmunity cohort9,17 were used for whole
transcription sequencing. Blood sample collection begins at the
3month study visit and continues every 3months until the child is 4
years old (if persistent islet autoimmunity is developed, until 15
years old) otherwise switches to 6 month intervals until 15 years
old64. The TEDDY study collected ~2.5ml of whole blood for total
RNA extraction using Applied Biosystems Tempus blood RNA tubes.
The KingFisher 96 robotic system from Thermo Fisher and the
MagMax magnetic bead technology in 96-well format were used for
the high throughput extraction of RNA samples. Total RNA was
extracted using theMegMaxmagnetic bead technology from frozen
whole blood samples by the TEDDY RNA Laboratory at Jinfiniti
Biosciences. The RNA samples were prepared using Illumina’s Tru-
Seq Stranded mRNA Sample Prep Kit. RNA-sequencing was per-
formed, via 61 batches, on the Illumina HiSeq4000 platform with
paired-end 2 × 101 bp reads with a targeted 50 million reads per
sample by the Broad Institute, Cambridge, MA.

For virome analysis stool samples were collected monthly from 3
to 48months of life, then every 3months until the age of 10 yearswhile
plasma samples were collected every three months from 3 to
48 months of life, then every 6 months. Appropriate packages, ship-
ping boxes and delivery schedules were provided. Details of the
experimental design, sample collection and processing, and data
generation of the TEDDY virome study have been published
previously18,65.

The TEDDY study was approved by local US Institutional Review
Boards and European Ethics Committee Boards in Colorado’s Col-
oradoMultiple Institutional Review Board, Georgia’s Medical College
of Georgia Human Assurance Committee (2004–2010), Georgia
Health Sciences University Human Assurance Committee
(2011–2012), Georgia Regents University Institutional Review Board
(2013–2015), Augusta University Institutional Review Board
(2015–present), Florida’s University of Florida Health Center Insti-
tutional Review Board, Washington state’s Washington State Insti-
tutional Review Board (2004–2012) andWestern Institutional Review
Board (2013–present), Finland’s Ethics Committee of the Hospital
District of Southwest Finland, Germany’s Bayerischen Land-
esärztekammer (Bavarian Medical Association) Ethics Committee,
Sweden’s Regional Ethics Board in Lund, Section 2 (2004–2012) and
Lund University Committee for Continuing Ethical Review
(2013–present). All parents or guardians provided written informed
consent before participation in genetic screening and enrollment.
The study was performed in compliance with all relevant ethical
regulations. Study has been registered at clinicaltrials.gov with trial
registration number NCT00279318.

RNA-seq alignment and quality control
Raw RNA-sequencing data from the TEDDY samples was aligned to
hg19 using STAR v2.4.166 software with the default parameters
except for the following: --sjdbScore 2 --outSAMattributes NH HI
NM MD AS XS --outFilterType BySJout --outSAMunmapped Within
--outFilterScoreMinOverLread 0 --outFilterMatchNminOverLread 0
--outFilterMismatchNmax 999 --outFilterMultimapNmax 20. The
resulting read counts were extracted with FeatureCounts v2.0.067.
Poor quality samples with unassigned reads proportion > 40% were
filtered out from downstream analysis based on PCA visualizations.
RNA-Seq quality scores (RQS) were assessed, with >90% exceeding
RQS of 5.5 (median 7.54, IQR 6.67–8.16). In addition we found
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similar normal RQS distributions between islet autoimmunity cases
and controls, as shown in Supplementary Fig. 15. The cell type
references and validation data was aligned to hg19 using STAR
v2.5.366 with the same parameters as when processing the TEDDY
samples.

Harmonizing subject omic samples prior to islet autoimmunity
seroconversion
Data harmony of virome and transcriptome samples are performed by
matching on common months prior to seroconversion. TEDDY study
uses a subject serial variable ‘due num’ which dictates the expected
and sequential sample from enrollment. This ‘due num’ is used to
match on case and control subjects and the pairs with RNASeq as well
as virome are harmonized and collected (relative from 12months prior
to seroconversion, counts listed in Supplementary Data 1a, b) for the
conditional logistic regression analysis described above. After data
harmonizing of matched case and control samples on TEDDY due
month, virome profiling consists of 9072 stool samples (mean 9 per
subject) and 4686 plasma samples (mean 5 per subject) analyzed for
virome.

Statistical testing to detect temporal differential expression
patterns
Differential expression analyses of gene read count data were per-
formed using DESeq268. In each time point, DESeq2 (Wald test) was
applied on raw count data (only protein coding genes and after fil-
tering for low count genes) with a multi-factor design formula which
includes the condition (islet autoimmunity case or control), sample
pair and HLA information. Multiple-hypothesis testing was considered
by using Benjamini–Hochberg correction69. For each time point, we
selected genes with adjusted p-value < 0.05 and |LFC|>0.5. We com-
bined all selected genes from different time points to form a set of
differentially expressed (first step gene selection) genes.

Temporal filtering of differentially expressed genes
Gene count data were normalized using the DESeq268 package, and
then the resulting gene expression data weremin-max scaled to have a
minimum value of zero and maximum value of 1. We then calculated
the median of each selected gene separately for case and control
samples. A slope was defined as the difference of the median gene
value between consecutive time points, resulting in a set of 4 slope
values from time point seroconversion to 12 months prior to ser-
oconversion, for each selected gene for case and control groups.
Maximum slope values for each gene in cases were scaled between
zero and one. Finally, genes with higher slope in cases were selected
with criteria: normalizedmax slope in cases >0.15 andmedian slope in
controls is less than half of themedian slope in cases. To further adjust
for testing across 4 timepoints, we reduce the reporting p-value
threshold (derived by conditional logistic regression described below)
from 0.05 to 0.01 or minimum of 2 timepoints with p-values ≤0.05.
These criteria were set to highlight the genes, where the temporal
effect is due to altered expression in cases, and thus, more likely dis-
ease relevant.

Conditional logistic regression for virome infections, gene
expression, and cell type proportions
Conditional logistic regression (CLR)was to assess the associated odds
of virome infections and the expression of the selected genes and
different cell types to the islet autoimmunity outcome in the
NCC1 setting of thematched pair indicator identifier. The analysis with
CLR is performed in R using the survival package (https://CRAN.R-
project.org/package=survival) while adjusting for HLA-DR/DQ geno-
type. Multiple comparison adjustments are not applied due to nested-
case control settings.

Model performance
Model performance was compared using p-values from Likelihood
ratio tests on all selected genes andmonths 3, 6, 9, and 12 prior to islet
autoimmunity onset. We compute the baseline with gene only, hla and
SNPs (INS and PTPN22), and iteratively adding gene and virus variables
to the models.

Deconvolution analysis and benchmarking
Validation data set that contained five RNA sequenced whole blood
samples with known cell type fractions was obtained from Gene
Expression Omnibus (GEO accession GSE60424). Expression profiles
for cell types present in whole blood were obtained from NCBI
Sequencing Read Archive (Supplementary Data 15).

For deconvolution analysis, all datasets (TEDDY samples, valida-
tion samples, cell type samples) were first normalized with DESeq2,
thenquantilenormalized togetherwithRpackagepreprocessCoreand
lastly transformed to logarithmic scale. Replicates of cell types were
combined with median. A reference sample representing a typical
whole blood samplewas formed by taking amedian across 190 control
subject samples selected at timepoints that matched to their NCC1
case seroconversion months that were not included in the further
analyses (Supplementary Data 1d).

To estimate the relative proportions of cell types, we used
regression analysis with elastic net regularization as described in detail
in refs. 70,71. In short, regression analysis was used tomodel thewhole
blood expression profile as a combination of the expression levels of
individual genes from different cell types and the reference sample,
weighted by the respective cell type proportions. Weights for cell type
proportions were estimated using elastic net regularization. These
weights reflect the contribution of each cell type on top of the refer-
ence sampleprofile in explaining theobservedwhole bloodexpression
profile. Regression was performed using all the expressed genes
(n = 17,964) with elastic net mixing parameter α =0.25.

For validation of the model, the reference sample was made with
all the five healthy control subjects’ samples (GEO accession
GSE60424) and regression was performed separately using the same
parameters. Pearson correlation with the ground truth cell type pro-
portions was 0.920 (Supplementary Fig. 9).

Virome profiling and capsid genotyping
We performed virome profiling using a custom version of Vipie62 and
further genotyping of viruses by mapping the sequences on EV capsid
proteins (VP1, VP2, VP3 and VP4) and HAdV capsid proteins (hexon,
penton and fiber) of virus strains available from Tampere Virology
group and GenBank72. Samples detected by Vipie, with aminimumof 5
hits of sequence reads with viral reference sequences, were selected
for capsid mapping via BWA73 using optimally selected contigs
assembled by Velvet74 and SPAdes75 and further matched onminimum
MAPQ of 30 (.999 probability). Discordance between case and control
number of virus exposed samples was tested using conditional logistic
regression. We defined consecutive EV infections as two or more
samples positive for different EV genotypes in the same child, while
viral persistence as reported18, could not be obtained due to the
shorter capsid regions applied by Vipie on genotyping.

Virome impact on host transcriptomic profiles
Using the EV and HAdV genotype mapped results, we matched the
following first RNASeq sample available, up to 3 months after the first
EV or HAdV infection as stool virome samples are collected monthly
while whole blood sample is taken quarterly. The matching control
sample, selected from the same host, is the prior infection free sample
taken prior to the virus infection. The sample selection steps are
repeated for EV and HAdV initial infections on control children. In this
setting, our data set yielded 44 islet autoimmunity case sample pairs
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(including 5 EV detections from plasma virome) and 13 control sample
pairs (including 2 EV detections from plasma) with available tran-
scriptome data. For HAdV we identified 88 case sample pairs (26 from
plasma) and 83 control sample pairs (20 from plasma).

Correlation between interested viral responses and
inflammation episodes
Using results from EV impact on host transcriptomic profiles, we
labeled case subjects based on hierarchical clusters partitioned from
differentiated immune genetic genes (high,medium and low) and viral
(EV and HAdV) groups and their strains of interests (HAdV-F, CVB1-5).
Correlationmaps are plotted using corrplot76 and statistical testing (p-
value < 0.05) performed using Pearson testing in R.

GSTM1 genotyping
Whole genome sequencing (WGS) data, produced using the Illumina
HiSeq X Series platformwith paired-end 2 × 150 bp reads byMacrogen
(USA), from a subset of the NCC1 RNA-seq cohort (345 pairs, 83%) was
used to determine the genotypes of GSTM1 gene. The raw sequences
were aligned to the Genome Reference Consortium Build 38
(GRCh38DH) based on Burrows–Wheeler Aligner (BWA) as previously
described77. WGS data was analyzed by TEDDY data coordinating
center using an in-house version of the Trans-Omics for Precision
Medicine (TopMed) GotCloud pipeline78,79. As deletion of the gene has
been reportedpreviously, we obtained the read counts from the loci of
the GSTM1 gene using Mosdepth -tool version 0.3.380.

Protein data analysis
Targeted mass spectrometry based proteomics data measured from
the plasma samples of TEDDY NCC1 cohort was used. These data were
generated and processed as described earlier (Nakayasu et al. 2022).
Log2 fold changes (LFC) of 167 proteins between cases and controls
from theTEDDYNCC1 cohortwere downloaded (Nakayasuet al. 2022).
Thesedata results are from the sameexperimentaldesign, and thus are
comparable to our RNA-seq data at the LFC level. To access pathway
enrichment concordance, Reactome database pathway enrichments
were evaluatedwith Enricher tool27. Twogenes,C2 andSERPING1, from
our EV analysis matched the set of 167 proteins. Peptide level protein
data from each sample was provided by the TEDDY data coordinating
center. Median of all individual peptides from each protein was cal-
culated and Spearman correlation was applied to evaluate the corre-
lation between RNA and protein levels in EV detected cases and
controls separately.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The TEDDY sequencing data used in this study have been deposited in
the dbGaP database under accession code phs001442.v4.p3. The
TEDDY omics data are available under restricted access for sensitivity
reasons, access can beobtainedby request through dbGaP. The results
data including log fold changes and cell type coefficients generated in
this study are provided in the Supplementary Information/SourceData
file. Themass spectrometry raw data used in this study are available in
the MassIVE database under accession codes MSV000091560 (untar-
geted proteomics) and MSV000091562 (targeted proteomics)
[https://massive.ucsd.edu/]. Clinicalmetadata analyzed for the current
study is available in the NIDDK Central Repository [https://repository.
niddk.nih.gov/studies/teddy/]. The deconvolution validation data
used in this study is available in the Gene Expression Omnibus (GEO)
under accession code GSE60424. The reference cell type data used in
deconvolution analysis are available in the GEO database under

accession codesGSM971331, GSM823383, GSM1060237,GSM3319903,
GSM1576438, GSM986103, GSM996197, GSM996200, GSM3039712,
GSM3039716, GSM3039720 and GSM1657640. Source data are pro-
vided with this paper.

Code availability
Analysis was performed using open source tools and libraries. Custom
scripts for key analysis steps are available on the GitHub repository
https://github.com/NykterLab/TEDDY_IA (https://doi.org/10.5281/
zenodo.8345041). Vipie virome web application scripts are available
on https://sourceforge.net/projects/vipie/ and hosted on http://vipie.
rd.tuni.fi/vipie/index.html. The enterovirus capsid libraries are avail-
able upon request from theTampere VirologyGroup (https://research.
tuni.fi/virology/).
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