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Background/Objective.Growth and obesity have been associated with increased risk of islet autoimmunity (IA) and progression to
type 1 diabetes. We aimed to estimate the efect of energy-yielding macronutrient intake on the development of IA through BMI.
Research Design and Methods. Genetically at-risk children (n= 5,084) in Finland, Germany, Sweden, and the USA, who were
autoantibody negative at 2 years of age, were followed to the age of 8 years, with anthropometric measurements and 3-day food
records collected biannually. Of these, 495 (9.7%) children developed IA. Mediation analysis for time-varying covariates (BMI z-
score) and exposure (energy intake) was conducted. Cox proportional hazard method was used in sensitivity analysis. Results. We
found an indirect efect of total energy intake (estimates: indirect efect 0.13 [0.05, 0.21]) and energy from protein (estimates:
indirect efect 0.06 [0.02, 0.11]), fat (estimates: indirect efect 0.03 [0.01, 0.05]), and carbohydrates (estimates: indirect efect 0.02
[0.00, 0.04]) (kcal/day) on the development of IA. A direct efect was found for protein, expressed both as kcal/day (estimates:
direct efect 1.09 [0.35, 1.56]) and energy percentage (estimates: direct efect 72.8 [3.0, 98.0]) and the development of GAD
autoantibodies (GADA). In the sensitivity analysis, energy from protein (kcal/day) was associated with increased risk for GADA,
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hazard ratio 1.24 (95%CI: 1.09, 1.53), p � 0.042. Conclusions.Tis study confrms that higher total energy intake is associated with
higher BMI, which leads to higher risk of the development of IA. A diet with larger proportion of energy from protein has a direct
efect on the development of GADA.

1. Introduction

Type 1 diabetes is a chronic autoimmune disease charac-
terized by destruction of the pancreatic islet beta-cells
resulting in lifelong dependency on insulin replacement
therapy. Te clinical onset is preceded by an asymptomatic
period, in which several autoantibodies to beta-cell antigens
are detectable in serum, often termed islet autoimmunity.
Te development of multiple autoantibodies is highly pre-
dictive of type 1 diabetes [1]. Incidence of childhood type 1
diabetes has been trending upward with an estimated overall
annual increase of 3% in many high- and low-income
countries, suggesting a potential role for several environ-
mental factors [2]. One environmental factor associated with
the development of type 1 diabetes is rapid growth and
obesity [3].

Weight gain, especially during early childhood (before
the age of 2 years), has been suggested to predict the risk of
islet autoimmunity in genetically predisposed children [4, 5],
particularly in those children developing GAD65 autoan-
tibodies (GADA) but not insulin autoantibodies (IAA) as
their frst appearing autoantibody [6].

It has been proposed that rapid childhood growth and
weight gain may promote islet autoimmunity by creating an
increased demand of insulin from the beta-cells. Tis would
lead to a greater stress on the beta-cells and make themmore
susceptible to an autoimmune attack due to another trig-
gering factor, such as enteroviral infections [7]. Te accel-
erator hypothesis [8] proposes that excess weight gain leads
to insulin resistance in early childhood and may initiate islet
autoimmunity, eventually leading to type 1 diabetes.

Previous studies have focused on early growth and re-
ported an association with both islet autoimmunity and
progression to type 1 diabetes [4, 5]. In our frst analysis of
growth and risk for islet autoimmunity and type 1 diabetes
in a multinational birth cohort on genetically at-risk chil-
dren followed up to the age of 4 years, we reported a weak
association between weight z-scores and risk for islet au-
toimmunity [9]. More recently, diferent growth phases
during early childhood have been identifed within the same
cohort and analysis suggested an association between the
early growth phase and the development of islet autoim-
munity [6]. It is yet to be determined what aspect of growth,
or factors infuencing growth, maybe driving the association.
As growth in children is directly related to dietary intake,
exploration of the composition of the diet may lead to in-
sights into the pathogenesis of islet autoimmunity.

Our aim was to estimate the efect of total energy and
energy-yielding macronutrient intake on the development of
islet autoimmunity in genetically at-risk children aged 2 to
8 years through body mass index (BMI), a prespecifed
mediator variable.

2. Methods

2.1. Study Population. Te Environmental Determinants of
Diabetes in the Young (TEDDY) is a prospective birth
cohort consisting of 8,676 enrolled genetically at-risk chil-
dren born between September 2004 and February 2010.
Children were enrolled to the study before the age of
4.5months and followed for 15 years to identify environ-
mental triggers of type 1 diabetes [10]. Children carrying
high-risk human leukocyte antigen (HLA) alleles for type 1
diabetes were enrolled at six centers: three in the USA
(Colorado, Washington, and Georgia/Florida) and three in
Europe (Finland, Germany, and Sweden). Te following
HLA-class II genotypes were eligibility criteria for enroll-
ment to the study from the general population: DRB1 ∗ 04-
DQA1 ∗ 03-DQB1 ∗ 03 : 02/DRB1 ∗ 03-DQA1 ∗ 05-DQ
B1 ∗ 02 : 01 (DR3/4), DRB1 ∗ 04-DQA1 ∗ 03-DQB1 ∗ 03 :
02/DRB1 ∗ 04-DQA1 ∗ 03-QB1 ∗ 03 : 02 (DR4/4), DR
B1 ∗ 04-DQA1 ∗ 03-DQB1 ∗ 03 : 02/DRB1 ∗ 08-DQA1
∗ 04-DQB1 ∗ 04 : 02 (DR4/8), and DRB1 ∗ 03-DQA1 ∗
05-DQB1 ∗ 02 : 01/DRB1 ∗ 03-DQA1 ∗ 05-DQB1 ∗ 02 :
01 (DR3/3). Infants with HLA-DR genotypes DRB1 ∗ 04-
DQA1 ∗ 03-DQB1 ∗ 03 :0 2/DRB1 ∗ 04-DQA1 ∗ 03-DQ
B1 ∗ 02 : 02 (DR4/4b), DRB1 ∗ 04-DQA1 ∗ 03-DQB1 ∗
03 : 02/DRB1 ∗ 01-DQA1 ∗ 01-DQB1 ∗ 05 : 01 (DR4/1),
DRB1 ∗ 04-DQA1 ∗ 03-DQB1 ∗ 03 : 02/DRB1 ∗ 13-DQ
A1 ∗ 01-DQB1 ∗ 06 : 04 (DR4/13), DRB1 ∗ 04-DQA1 ∗
03-DQB1 ∗ 03 : 02/DRB1 ∗ 09-DQA1 ∗ 03-DQB1 ∗ 03 :
03 (DR4/9), and DRB1 ∗ 03-DQA1 ∗ 05-DQB1 ∗ 02 : 01/
DRB1 ∗ 09-DQA1 ∗ 03-DQB1 ∗ 03 : 03 (DR3/9) were in-
cluded only if they had a frst-degree relative (i.e., mother,
father, or sibling) with type 1 diabetes. Te HLA DR-DQ
genotype abbreviations shown in parentheses will be used
throughout this paper. Details of the study design, eligibility,
and methods have been previously published [11].

Subjects who developed islet autoantibodies or type 1
diabetes before the age of 2 years were excluded. A fowchart
of the study populations in Figure 1 illustrates that a total of
5,084 children were prospectively followed from age 2 up to
the age of 8 years for anthropometric measurements and
food records with a median follow-up time of 6 years (IQR 5,
6). Written informed consent was obtained for all study
participants from a parent or primary caretaker, separately,
for genetic screening and participation in the prospective
follow-up. Te study was approved by local institutional
review boards and is monitored by an external advisory
board formed by the National Institutes of Health.

2.2. Anthropometric Variables and Growth Measures.
Length and height were measured by trained study per-
sonnel at clinical visits every three months from the age of
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3months up to 4 years of age, and every 3 to 6months after
the age of 4 years. Length was measured as standing height to
the nearest 0.1 cm. Body weight was measured in light
clothing, using regularly calibrated digital scales. BMI (z-
score) was calculated as weight in kilograms divided by
height in meters squared and transformed to standard de-
viation scores using World Health Organization (WHO)
reference values [12] (i.e., measures of relative weight ad-
justed for child age and sex) and was used as a continuous
variable in our analyses.

2.3. Dietary Assessment. Data on food consumption were
collected by 3-day food records, biannually from the age of
12months. Parents were asked to keep a food record doc-
umenting all foods and beverages consumed by the child
over a 3-day period (ideally two weekdays and one weekend
day) within 10 days of the scheduled clinic visit. Detailed
instructions on how to complete the food records were given
to the parents, both verbal and written instructions. Addi-
tional guidance was given to the parents in the form of a food
portion size booklet with photographs of foods and dishes
containing four to fve portion sizes, drawings, and shapes of
other types of foods to enhance the accuracy in reporting the
child’s habitual food consumption. Te dietary assessment
method used in the study has been described previously [13].
When the child started attending daycare, separate food
records and supporting material were provided for the
daycare personnel. Completed food records were reviewed
by a trained study nurse and family members were probed

about missing information during face-to-face interview at
the clinic visit. Te food records were entered in country-
specifc food composition databases and each country
analysed their food records separately. Te four countries’
food composition databases have been harmonized within
the TEDDY study and values for energy and macronutrients
(protein, fat, and carbohydrates) are comparable between all
four databases [14]. Total mean energy intake from the
reported days was calculated as mean intake, expressed as
kilocalories (kcal). Energy from the energy-yielding mac-
ronutrients (protein, fat, and carbohydrates) was calculated
as daily intake (in gram) and multiplied with the energy
values for protein (4 kcal/g), fat (9 kcal/g), and carbohydrates
(4 kcal/g). Te proportion of energy-yielding macronutri-
ents in the diet was calculated using energy from macro-
nutrients divided by total energy intake, expressed as
percentages (E%).

2.4. StudyOutcomes. Venous blood samples were obtained
every 3 months until the age of 4 years and biannually
thereafter for the analysis of islet autoantibodies against
insulin (IAA), glutamic acid decarboxylase (GADA), and
insulinoma antigen-2 (IA-2A). In this study, islet auto-
immunity was defned as persistent and confrmed pos-
itivity for ≥1 islet autoantibody in two or more
consecutive blood draws, three months apart. Autoanti-
body titers have not been taken into account. Autoanti-
bodies were measured in radiobinding assays as
previously described [15].

Children enrolled in the TEDDY study
n= 8,676

Excluded subjects, n=3,592 (41%)
ineligible HLA (i.e., did not meet TEDDY inclusion criteria),
n=120 (3.3%) 

lef the study < 2 yrs. of age (withdrawn or developed T1D),
n=1715 (47.7%)

developed ≥ 1 islet autoantibodies (IAA, GADA, IA-2A) < 2 yrs.
of age, n=84 (2.3%)

- censored prior to the age of 8 years, n=1325 (36.9%) 
- missing infant diet or anthropometrics data, n=348 (9.7%)

Study participants included in the analyses*
n = 5,084 

Developed islet autoantibodies
n = 495 (9.7%)

Free from islet autoantibodies
n = 4,589 

-

-

-

Figure 1: Flow chart describing the study population. ∗Te outcome was islet autoantibody positive or negative by 8 years of age. No further
observation of outcome was done after this time.
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2.5. StatisticalAnalyses. Mediation analysis for time-varying
mediators and exposure was conducted by the method
described by Lin et al. [16]. Mediation analyses does not
imply causal relationships but quantifes the efect of the
exposure variable on the outcome either directly (direct
efect) or indirectly through the mediator (indirect efect).
Mediation analysis for time-varying covariates, such as
energy intake and BMI, has been described [17], and the
possible relationship between reported energy intake and
BMI with islet autoimmunity is depicted in the diagram
shown in Supplementary Figure 1. Tis methodology re-
quires that the event outcome to be known at all time points
of the exposure period (i.e., no censoring). Tus, subjects
who withdrew from the study between 2 and 8 years of age
without reported autoantibodies (n� 1325) were excluded
from this analysis in addition to subjects with ineligible HLA
genotypes, missing infant diet or anthropometric data, or
developed islet autoantibodies before the age of 2 years.

Tree outcome events were examined: IAA, GADA, or any
islet autoantibody (IAA, GADA, or IA-2A). For each outcome
event, four diferent exposure variables were independently
analysed: total energy and energy (calories) from protein, fat,
and carbohydrates, respectively. For each outcome and ex-
posure variable, BMI z-score was the mediator variable.
Baseline covariates for all analyses were variables previously
identifed as risk factors associated with type 1 diabetes in the
TEDDY study: country, frst-degree relative with type 1 di-
abetes, and HLA genotype [18]. For IAA and GADA analyses,
any other autoantibody detected was a time-varying binary
confounder. A sensitivity analysis was conducted using a Cox
proportional hazard model including all subjects who were
autoantibody negative and with at least one submitted food
record after the age of 2 years (n� 6,409). Te analysis was
stratifed by country and included information about HLA-
genotype and type 1 diabetes-FDR as baseline covariates and
BMI z-score as time-varying covariate. Te SAS macro,
mgformula version 3, was used for all analyses.

3. Results

Te cohort consists of 5,084 subjects who were islet auto-
antibody negative at the age of 2 years (Figure 1), as of July
31, 2020. At the last visit through the age 8 years, 495 (9.7%)
were autoantibody positive, 319 (6.3%) with IAA, and 363
(7.1%) with GADA as the frst appearing persistent and
confrmed autoantibody. Te median age of children at the
time of seroconversion to islet autoimmunity in this study
was 39months (IQR� 36). Te baseline characteristics for
the study population are summarized in Table 1. Reported
total energy intake and energy-yielding macronutrients
increased gradually by age, while when expressed as per-
centages of energy, they remained relatively stable (Table 1).

Te mediation analysis results in estimates of the total,
direct, and indirect efects for each outcome and exposure
combination (Table 2). Te direct efect measures the as-
sociation of the exposure on the outcome not going through
the mediator (BMI z-score). Te indirect efect measures the
association of the exposure on the outcome going through
the mediator.

Tere was no evidence of a direct efect of total energy
intake or energy from protein, fat, or carbohydrates, re-
spectively, on the development of islet autoimmunity, except
for energy from protein (kcal/day) on the development of
GADA positivity (estimates: direct efect 1.09 [0.35, 1.56])
(Table 2). In contrast, we found an indirect efect of total
energy intake (estimates: indirect efect 0.13 [0.05, 0.21]) and
energy from protein (estimates: indirect efect 0.06 [0.02,
0.11]), fat (estimates: indirect efect 0.03 [0.01, 0.05]), and
carbohydrates (estimates: indirect efect 0.02 [0.00, 0.04]) on
the development of islet autoimmunity (Table 2).

When repeating the analyses using energy percentage
(energy from macronutrients divided by total energy intake)
as exposure variables, the combination of energy from
protein (%) and GADA positivity again showed a direct
efect (estimates: direct efect 72.8 [3.0, 98.0]) (Table 3).

Te analyses suggest that there is an indirect efect of
total energy through BMI for the development of islet au-
toimmunity. To determine the efect size of BMI z-score on
islet autoimmunity, a cross-tabulation was done with BMI z-
score dichotomized at ≥1.5. Again, all subjects were auto-
antibody negative at the age of 2 years and the percentage of
subjects with islet autoimmunity tends to be higher for the
higher BMI subjects than for subjects with lower BMI z-
scores, especially at age 3 (BMI z-score ≥1.5 3.4% vs. BMI z-
score <1.5 2.0%) (Supplementary Table 1).

3.1. Sensitivity Analyses. A sensitivity analysis was con-
ducted to determine whether the observed energy from
protein (kcal/day) and GADA efect was due to the exclusion
of subjects who withdrew from the study between the age of
2 and 8 years. Te Cox regression analysis showed that
energy intake from protein was associated with an increased
risk for the development of GADA, hazard ratio 1.24 (95%
CI: 1.09, 1.53), p � 0.042, which suggests that the fndings
from the mediation analysis showing an efect of energy
from protein (kcal/day) on the development of GADA is not
driven by the exclusion of participants who left the study
before the age of 8 years. To further analyse this fnding, we
performed an additional Cox analysis replacing HLA with
(1) HLA DR4 genotype (yes or no) and (2) HLA DR3 ge-
notype (yes or no). For each of these analyses, we included
the genotype and the interaction of the genotype with energy
from protein. Tese analyses detected a signifcant in-
teraction between energy from protein and HLA DR4
haplotype in relation to the development of GADA
(p � 0.017), but no signifcant interaction was found for
energy from protein and HLA DR3 (p � 0.761). Te hazard
ratio (95% CI) for energy from protein for DR4 no was 0.71
(0.43, 1.18) and for DR4 yes was 1.37 (1.10, 1.72).

4. Discussion

In this large multinational birth cohort of genetically pre-
disposed children, we found that total energy intake (and
energy frommacronutrients, independently) from the age of
two years, acts indirectly through BMI on the development
of islet autoimmunity. Interestingly, there appears to be
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a direct efect of energy from protein on the development of
GADA, where a larger contribution of energy from protein
in the diet increases the risk of GADA, but not through
increased BMI. When using energy adjusted macronutrient
intake (energy percent), the indirect efect on development
of islet autoimmunity disappeared but there was still a direct
efect of percent of protein on the development of GADA,
indicating that increasing amounts of protein appear to
increase the risk of GADA, but not through increased BMI.
In addition, it appears that the signifcant efect of protein on
the development of GADA is primarily due to children who
carry the DR4 haplotype.

Tis study confrms earlier data suggesting that higher
BMI is associated with the development of islet autoim-
munity and that excessive energy intake (greater energy
intake than energy expenditure over a longer time) has an
indirect efect on the outcome. Previous studies have used
diferent measures of weight gain and obesity, such as rapid
weight gain, length/height-for-age, BMI, and growth ve-
locity, and most have shown an overall association between
childhood overweight and obesity and subsequent increased
risk of islet autoimmunity and type 1 diabetes [4, 19–21]. A
plausible biological explanation is that increased weight gain
or overweight increases insulin demands and infuences
beta-cell activity to indirectly modify the risk of developing
islet autoimmunity. Te novelty of this work is that it shows
that energy from protein is contributing directly to the
development of islet autoimmunity and specifcally GADA
positivity. It has been suggested that high protein diets
during infancy and early childhood may accelerate growth
and lead to overweight later in life. In two systemic reviews,
it was found that higher protein intake during the second
year of life was associated with increased risk of overweight
and obesity in children [22, 23]. Also, studies have found
that nondairy animal protein (meat) was associated with
increased BMI; however, these fndings have been
inconsistent [24].

Higher protein intake increases the intake of essential
branched-chain amino acids (BCAA), which has been as-
sociated with increased risk for overweight and insulin

resistance in children [25]. High protein intake increases
circulating concentrations of insulin-releasing BCAA, which
stimulate the secretion of insulin and insulin-like growth
factor (IGF-1) and consequently enhance weight gain [26].
Herein, we showed that energy intake from protein was
associated with GADA positivity. To our knowledge, protein
intake has not been related to islet autoimmunity or type 1
diabetes in any previous prospective study. Of note, a pre-
vious ecologic study showed that type 1 diabetes incidence in
children was positively correlated with average per capita
energy intake from food items of animal origin [27]. While it
is difcult to draw conclusions from ecological studies, these
observations further support the notion of associations
among dietary habits, food intake patterns, and the in-
cidence of childhood type 1 diabetes at population level.
More recently, two studies found an association with higher
meat consumption and increased risk of type 1 diabetes
[28, 29]. Cereal consumption (plant protein) and high intake
of cow’s milk has been associated with islet autoimmunity
and progression to type 1 diabetes in genetically susceptible
children [30–33]. During early childhood, milk and milk
products are often consumed in large amounts, especially in
the Nordic countries, including Sweden and Finland. It has
been reported that high milk intake, but not meat intake,
increased the concentrations of IGF-1 and was associated
with increased overweight and obesity later during child-
hood [34, 35].

Te infant gut microbiome undergoes several phases of
microbiome progression during the frst four years of life
where the major driver of changes during late infancy are
breastfeeding duration and introduction to solid comple-
mentary foods [24, 36]. Te dietary composition has a large
efect on the microbiome where diferent dietary compo-
nents directly shape the gut microbiota and diversity
[37, 38]. A less healthy diet (high fat and/or protein and low
carbohydrates) is often characterized by less favourable ratio
between the two dominating phyla: Bacteroides to Firmi-
cutes [39]. For example, following a Mediterranean diet, that
includes high intakes of plant foods, unsaturated vegetable
oils, dairy products, and low amounts of meat, which in turn

Table 2: Estimates (95% confdence interval) for total efect, direct efect, and indirect efect for islet autoantibody development (outcome)
in TEDDY children (n� 5,084), using BMI z-score as the mediator in all analyses.

Exposure variable Outcome Total efect Direct efect Indirect efect
Estimates (95% CI)

Total energy intake (kcal)
IA positivity (≥1) 0.89 (−1.43, 2.20) 0.76 (−1.63, 2.20) 0.13 (0.05, 0.21)

IAA −0.25 (−2.47, 1.87) −0.39 (−2.49, 1.84) 0.1 (0.00, 0.20)
GADA 1.15 (−0.48, 2.28) 1.03 (−0.55, 2.22) 0.12 (−0.01, 0.26)

Energy intake from protein (kcal)
IA positivity (≥1) 0.83 (−0.41, 1.45) 0.78 (−0.47, 1.41) 0.06 (0.02, 0.11)

IAA −0.09 (−1.31, 0.91) −0.08 (−1.31, 0.87) 0.04 (−0.03, 0.12)
GADA 1.1 (0.36, 1.56) 1.09 (0.35, 1.56) 0.06 (−0.03, 0.14)

Energy intake from fat (kcal)
IA positivity (≥1) 0.22 (−0.32, 0.54) 0.19 (−0.35, 0.53) 0.03 (0.01, 0.05)

IAA −0.06 (−0.61, 0.38) −0.10 (−0.64, 0.38) 0.05 (−0.04, 0.08)
GADA 0.27 (−0.21, 0.54) 0.26 (−0.29, 0.56) 0.01 (−0.05, 0.09)

Energy intake from carbohydrates (kcal)
IA positivity (≥1) 0.06 (−0.41, 0.29) 0.04 (−0.44, 0.28) 0.02 (0.00, 0.0 )

IAA −0.07 (−0.48, 0.24) −0.06 (−0.51, 0.25) 0.03 (−0.03, 0.16)
GADA −0.01 (−0.30, 0.22) −0.02 (−0.35, 0.24) 0.01 (−0.05, 0.09)

Te bold values represent the 95% confdence intervals not going through 0 which are considered as signifcant efect.
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leads to lower protein intake compared to a Western diet,
has been inversely associated with not only the risk of
overweight and obesity but also increased abundance of
health-related bacterial species and short-chain fatty acids
(SCFA) producing bacteria [40]. Te human gut microbiota
may play an important role in the development of obesity
later in life but the exact mechanism by which the gut
microbiota contribute to obesity is not well known and need
to be investigated further.

In the present study, we do not have information about the
food groups as a type of protein source (animal or plant) to
conduct further in-depth analyses.Tese fndings highlight the
need for future studies on dietary patterns and food groups
and their impact on the development of islet autoimmunity
and progression to type 1 diabetes, especially during the
transition period from milk feeding (either breastmilk or
infant formula) to the long-term family eating habits. Previous
research has highlighted that energy from protein should not
exceed 15% in the child’s diet during the frst 12–24months of
life, with the aim to reduce the risk of obesity later in childhood
[41, 42]. Daily protein intake in children living in high-income
countries usually exceed by far the recommended intake. Te
dietary requirement, defned as minimum intake that meets
the metabolic demands, maintenance of body protein mass,
and the needs for growth in children, is 0.8–0.9 g protein/kg
body weight, which equates to about 5 energy percent [43].
Te corresponding protein intake in the current study ranges
from 3.4 g/kg bodyweight at 2 years of age and 2.1 g/kg
bodyweight at 8 years of age (data not shown). Moreover, the
reported protein intake in this multinational study population
aligns with reported intake from similar pediatric study
populations [44, 45]. While more confrmatory data are
needed, identifying modifable risk factors for islet autoim-
munity and type 1 diabetes in early life is needed. Studying the
efects of diferent protein rich foods on growth during
childhood or actively managing the proportion of macronu-
trients in pediatric diets could potentially provide a strategy for
reducing risk for islet autoimmunity in genetically predisposed
children.

Capturing a habitual food intake is difcult and study
results may be afected by family dietary patterns and food
choices due to parental knowledge of the child’s genetic risk

of type 1 diabetes. In TEDDY, we collect information about
parental actions to prevent type 1 diabetes in the ofspring.
At the age of 15months, 29% of themothers reported dietary
changes as an action to prevent type 1 diabetes in their child
[46]. Te specifc type of dietary change most often reported
was reducing the intake of carbohydrate rich foods in the
child’s diet (sweets or carbohydrates). Te rationale behind
maybe based on the belief that high intake of sugar rich foods
will cause type 1 diabetes. Tese maternal actions may skew
the ratio between the energy providing macronutrients.

Most studies have focused on rapid weight gain during
the frst 6–12months of life but diferent growth phases have
been identifed, and rapid weight gain from two years of age
and onwards has also been associated with the later risk of
overweight and obesity [47]. Te child’s diet during this
period is mostly infuenced by family eating habits that
maybe consistent throughout the childhood. Longer dura-
tion of breastfeeding (both exclusive and any) has been
associated with slower weight gain during the frst year of life
[48] and fndings from the TEDDY cohort indicate that
longer breastfeeding duration (both exclusive and any) were
associated with reduced risk of obesity at 5 years of age, but
no association was found for the development of islet au-
toimmunity [49]. Despite this knowledge, it is of relevance to
explore if dietary habits after breastfeeding period also are
associated with growth, obesity, and the risk of islet auto-
immunity during childhood.

4.1. Study Limitations. Due to difculties in estimating total
energy intake in breastfed children, a minimum age cut-of
of two years was decided. In TEDDY, caregivers were
instructed to only record each episode of breastfeeding in the
3-day food records. Daily energy intake in breastfed infants
was calculated using an algorithm based on the child’s
energy requirements at a given age and body weight plus
additional energy need for growth [50]. By using this
method, it is difcult to capture potential under and
overfeeding during infancy. Te chosen minimum age cut-
of of two years of age resulted in the exclusion of subjects
who developed IA before the age of 2 years. Te incidence
rate of IAA as frst islet autoantibody reaches a peak at one
year of age, indicating a more rapid progression to the

Table 3: Estimates (95% CI) for total efect, direct efect, and indirect efect for islet autoantibody development (outcome), using energy
percentage (energy from macronutrients/total energy) as exposure variables among TEDDY children (n� 5,084). In all analyses, BMI z-
score is used as mediator.

Exposure variable Outcome Total efect Direct efect Indirect efect
Estimates (95% CI) Estimates (95% CI) Estimates (95% CI)

Percent of energy from protein (%)
IA positivity (≥1) 40.6 (−7.8, 97.8) 39.6 (−7.9, 97.8) 1.0 (−0.2, 2.4)

IAA 33.0 (−4.7, 98.1) 31.7 (−4.7, 98.1) 1.4 (−0.2, 2.6)
GADA 73.7 (3.9, 98.0) 72.8 (3.0, 98.0) 0.9 (−1.3, 3.3)

Percent of energy from fat (%)
IA positivity (≥1) 3.2 (−9.4, 17.2) 3.0 (−9.3, 16.9) 0.2 (−0.2, 0.9)

IAA 0.2 (−6.4, 15.5) 0.1 (−0.1, 0.6) 0.1 (−0.1, 0.6)
GADA 4.3 (−8.8, 50.8) 4.2 (−8.9, 50.3) 0.2 (−0.2, 0.9)

Percent of energy from carbohydrates (%)
IA positivity (≥1) −5.8 (−20.3, 7.2) −5.7 (−20.2, 7.1) −0.1 (−0.4, 0.0)

IAA −2.0 (−16.7, 4.7) −2.0 (−16.7, 4.8) −0.1 (−0.4, 0.0)
GADA −8.5 (−24.8, 5.5) −8.4 (−24.8, 6.0) −0.1 (−0.5, 0.1)

Te bold values represent the 95% confdence intervals not going through 0 which are considered as signifcant efect.
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disease [18], and in this study population, children de-
veloped GADA at an older age compared to children who
develop IAA. In addition, a total of 44 children developed
type 1 diabetes before 2 years of age. Te exclusion criteria
may imply a better overview of the development of GADA
compared to IAA. Of note, similar results have been de-
scribed in the TEDDY study population before, showing
a higher rate of weight gain during early childhood (up to the
age of 4 years) was associated with an increased risk of
progression from IA to type 1 diabetes in children with
GADA as frst appearing autoantibody [6].

An additional limitation is the inability of the software
used for the mediation analyses to analyse censored ob-
servations. Te larger categories of excluded subjects
(withdrawn from the study before the age of 2 years, missing
food record data and censored observations, i.e., left the
study between the age of 2 and 8 years) could bias the ob-
servations of the present study. To address this, Cox pro-
portional hazard analysis that included subjects who left the
study before the age 8 was performed and showed a sig-
nifcant association of energy from protein and the devel-
opment of GADA, supporting the fndings from the
mediation analysis.

Other factors associated with overweight and obesity
later in life, such as maternal BMI, maternal type 1 diabetes
status, birth weight, and breastfeeding duration have not
been taken into consideration in the mediation analysis, and
this limitation should be acknowledged when interpreting
the results.

In conclusion, this study confrms that a higher total
energy intake is associated with higher BMI, which in turn
leads to the higher risk of development of islet autoim-
munity. Further, by analysing dietary components, a diet
with higher proportion of energy from protein has a direct
efect on the development of GADA.
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[28] E. Syrjälä, J. Nevalainen, J. Peltonen et al., “A joint modeling
approach for childhood meat, fsh and egg consumption and
the risk of advanced islet autoimmunity,” Scientifc Reports,
vol. 9, no. 1, p. 7760, 2019.

[29] S. Muntoni, R. Mereu, L. Atzori et al., “High meat con-
sumption is associated with type 1 diabetes mellitus in

10 Pediatric Diabetes

https://downloads.hindawi.com/journals/pedi/2023/3945064.f1.pdf
https://downloads.hindawi.com/journals/pedi/2023/3945064.f1.pdf


a Sardinian case-control study,” Acta Diabetologica, vol. 50,
no. 5, pp. 713–719, 2013.

[30] S. M. Virtanen, J. Nevalainen, C. Kronberg-Kippilä et al.,
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