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Dynamic changes in immune gene 
co‑expression networks predict 
development of type 1 diabetes
Ingrid Brænne1,32, Suna Onengut‑Gumuscu1,2,32, Ruoxi Chen1, Ani W. Manichaikul1,2, 
Stephen S. Rich1,2,3, Wei‑Min Chen1,2, Charles R. Farber1,2,3* & the TEDDY Study Group

Significant progress has been made in elucidating genetic risk factors influencing Type 1 diabetes 
(T1D); however, features other than genetic variants that initiate and/or accelerate islet autoimmunity 
that lead to the development of clinical T1D remain largely unknown. We hypothesized that 
genetic and environmental risk factors can both contribute to T1D through dynamic alterations of 
molecular interactions in physiologic networks. To test this hypothesis, we utilized longitudinal blood 
transcriptomic profiles in The Environmental Determinants of Diabetes in the Young (TEDDY) study 
to generate gene co‑expression networks. In network modules that contain immune response genes 
associated with T1D, we observed highly dynamic differences in module connectivity in the 600 days 
(~ 2 years) preceding clinical diagnosis of T1D. Our results suggest that gene co‑expression is highly 
plastic and that connectivity differences in T1D‑associated immune system genes influence the timing 
and development of clinical disease.

Type 1 diabetes (T1D) is an autoimmune disease caused by the T cell-mediated destruction of insulin-producing 
β-cells in the pancreatic  islets1. T1D is the most common chronic disease in children, with rapidly increasing 
rates, particularly in historically low prevalence  populations2. T1D is typically preceded by islet autoimmunity, 
defined by persistence of at least one of three islet autoantibodies—insulin autoantibody (IAA), insulinoma anti-
gen-2 autoantibody (IA-2A), or glutamic acid decarboxylase autoantibody (GADA). Recently, staging of disease 
progression has been defined by both the presence and number of  autoantibodies3. Both islet autoimmunity 
and development of clinical T1D are influenced by genetic and environmental  factors4,5. Identifying individual 
risk factors and how they interact is key to developing novel, personalized T1D prediction, intervention, and 
treatment strategies.

Recent studies suggest that complex diseases, such as T1D, are driven primarily by complex molecular net-
works whose function is altered by genetic and environmental risk  factors6. Defining network topologies in T1D 
relevant cell-types represents a novel approach to understand how individual factors impact molecular networks 
in these cells and how network perturbations modify the risk of T1D. Gene co-expression network analysis, a 
method that groups genes based on similarity in expression profiles across a series of perturbations (e.g., inter-
vention or genetic background), is an approach for constructing  networks7. Gene co-expression networks have 
the advantage of providing information of how genes interact in specific cell types or tissues. Few studies have 
employed co-expression network studies of  T1D8,9. The result of one  study8 identified an interferon regulatory 
factor-7 (IRF7)-driven inflammatory network module associated with T1D risk. While prior studies have char-
acterized risk factors and networks between prevalent T1D cases and controls, a major limitation of studies has 
been the use of gene expression profiles after disease onset with variable lengths of T1D duration (and treatment). 
Conceptually, gene expression should be obtained from pre-clinical subjects (those “at risk”) and followed over 
time. This optimal study design would provide information on the transitions in disease stages (from “at risk” 
to “disease initiation” to “disease progression” to “disease onset”) and the changes in network topology, thereby 
providing insight on the features leading from risk to islet autoimmunity and, ultimately, T1D.

To better understand the dynamic nature of co-expression networks and their role in T1D, we examined gene 
expression from participants in The Environmental Determinants of Diabetes in the Young (TEDDY)  study9. 
The primary aim of TEDDY is to identify factors influencing the development of islet autoimmunity and T1D 
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through the long-term monitoring of children at high genetic (based upon HLA genotype) risk. From an initial 
cohort of over 8000 children, TEDDY has obtained samples at multiple time points prior to development of islet 
autoimmunity and T1D.

Here, we used weighted gene co-expression network analysis (WGCNA) to define the dynamic nature of 
co-expression networks preceding progression to  T1D10,11. We observed that the majority of modules in a refer-
ence network exhibited differences that distinguish those TEDDY participants that develop T1D (and becoming 
‘cases’) from those not progressing (‘controls’) during at least one period in the 600 days preceding T1D diag-
nosis. Two of the modules were enriched for genes associated with T1D that play key roles in immune function, 
suggesting a possible causal contribution to islet autoimmunity, progression rate, and/or development of T1D.

Results
Construction of a reference T1D co‑expression network. The conceptual framework of the analytic 
process is shown in Fig. 1. Initially, TEDDY whole blood transcriptomic profiles (N = 1921) were grouped into 
10-day intervals, starting at 600 days before diagnosis through progression to islet autoimmunity and T1D onset. 
This strategy enables the identification of network differences specific to T1D independent of differences in 
age at diagnosis. A “reference” network was created using  WGCNA11 and gene expression profiles from those 
TEDDY participants who progressed to T1D (N = 60), collected 180 days prior to date of diagnosis. This refer-
ence network enabled comparisons of network dynamics across time, sex, and disease status. The reference 
network contained 25,528 genes partitioned into 36 co-expression modules with module sizes ranging from 19 
genes to 1823 genes (Supplementary Table 1).

Dynamic changes in module connectivity between T1D cases and controls. TEDDY provides 
unique longitudinal gene expression profiles; thus, a key question is whether global network topology (i.e., 
organization of gene–gene relationships) differs between those who develop T1D (cases) and controls (those 
who do not during that time period). A secondary question is whether the network topologies (gene–gene 
relationships) change over time. To characterize longitudinal change, module connectivity (sum of all pairwise 
gene connections in a module) was calculated for all modules in the reference network for each 10-day interval. 
Modular Differential Connectivity (MDC), defined as the ratio of whole module connectivity in T1D cases rela-
tive to controls, was then  calculated12. Across the 600-days preceding T1D diagnosis, all 36 modules displayed 
significantly (P < 0.05) increased or decreased MDC during at least one 10-day interval in either males or females 
(with log(MDC) values ranging from -3 to 3.9 in females and -3.4 to 5.7 in males; Fig. 2 and Supplementary 
Fig. 1). Although MDC values and patterns differed by sex, the mean change in MDC over time was not signifi-
cantly (P > 0.05) different between males and females.

Identification of “immune” modules enriched for T1D GWAS genes. Based upon TEDDY blood 
transcriptomic data, MDC appears to be highly dynamic over time. To focus on those changes directly impact-
ing T1D risk, we identified modules containing genes with an increased likelihood of being causally associated 
with risk of developing T1D. Prior studies have demonstrated that co-expression modules are more likely to 

Figure 1.  Construction of a “reference” T1D co-expression network enabled the exploration of changes of gene 
network dynamics across time, sex and disease status. (1) TEDDY transcriptomic profiles were grouped based 
on time from diagnosis and a “reference” WGCNA network was constructed for cases sampled approximately 
180 days before T1D diagnosis. (2) Reference network modules were tested for enrichment of GWAS implicated 
genes. (3) For modules identified in step 2, we evaluated longitudinal differences in connectivity between cases 
and controls, (4) and we investigated the role of individual genes module behavior and T1D.
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be causally related to a disease if they are enriched for genes implicated by genome-wide association studies 
(GWAS)7,13. Using data from robustly-defined T1D-associated GWAS  results14, we identified genes implicated by 
GWAS and mapped them onto the reference network (Supplementary Table 2). The purple (FDR = 3.36 ×  10–4), 
blue (FDR = 9.72 ×  10–5), and turquoise (FDR = 3.24 ×  10–4) modules were significantly enriched for T1D GWAS-
implicated genes (Fig. 3A).

To further prioritize the three modules enriched for T1D GWAS-implicated genes, genes relevant to immune 
function were identified. Gene ontology (GO) enrichment analyses revealed that the purple and blue modules 
were enriched for immune-related GO terms and pathways, including the terms “immune response” (purple 
module FDR = 1.0 ×  10–33; blue module FDR = 4.9 ×  10–41) and “immune system” (purple module FDR = 8 ×  10–10; 
blue module FDR = 8 ×  10–32) (Fig. 3B, C and Supplementary Table 3). In contrast, the top GO term enrichments 
for the turquoise module were not immune-related. The top turquois module GO term was “cellular metabolic 
process” (FDR = 2.2 ×  10–21) (Fig. 3B, C and Supplementary Table 3). Based on the enrichment of immune related 
genes, the blue and the purple modules were the focus of subsequent analyses.

The purple and blue modules were enriched for genes representative of specific immune cell  types16. The 
purple module was enriched for genes in the monocyte/macrophage signature gene set (FDR = 2 ×  10–44) while 
the blue module was enriched for two different sets of neutrophil signatures genes (with gene overlaps of 71% 
and 60%, FDR = 5 ×  10–71 and FDR = 4 ×  10–54, respectively) (Fig. 3D).

Figure 2.  Maximum and minimum logarithmic MDC values in females and males over a time period of 
600 days per module. The modules are ordered by module size.
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The purple module contained genes reported to be upregulated during Rhinovirus infection (Fig. 3E)17, as 
well as being enriched for genes upregulated by influenza and respiratory syncytial virus (RSV) infections (FDR 
ranged from 3 ×  10–39 to 3 ×  10–44) (Fig. 3E). Epstein Barr Virus (EBV) protein has been associated with autoim-
mune  diseases18, and both the purple and the blue modules were enriched for genes differentially expressed 
between EBV + and EBV- Ramos B cells (FDR = 5 ×  10–3 and 2 ×  10–4) (Fig. 3F). Both purple (FDR = 6 ×  10–49) 
and blue (FDR = 1 ×  10–13) modules were enriched for genes in an interferon regulatory factor 7 (IRF7)-driven 
inflammatory network, also previously associated with  T1D9 (Fig. 3G).

Figure 3.  Characterization of the TEDDY blood co-expression network. (A) Modules enriched for T1D 
GWAS-implicated genes (adjusted using FDR method). (B, C) GO term and pathway enrichment based on 
 ConsensusPathDB15. The P values are FDR adjusted P values. (D–G) All enrichment P values are adjusted based 
on FDR method (D) Percentage of context dependent signature genes found in modules based on proxy genes 
identified by Zhernakova et al.16 (E) Percentage of genes differentially expressed under viral infection identified 
by Zaas et al.17 (F) Percentage of genes differentially expressed between EBV + and EBV- Ramos B  cells18 (G) 
Percentage of genes found in the IRF7-driven inflammation network based on Heinig et al.9 (H–K) Ratio of 
expression in cases versus controls over time for cell type proxy genes (L, M) Ratio of expression in cases versus 
controls of viral infection signature genes .
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Co-expression within the purple and blue modules could be due to correlations induced by changes in the 
proportions of immune cell-types and not by intrinsic cellular connections between genes. The expression of the 
monocyte/macrophage and neutrophil immune cell-type signature  genes16 was compared in T1D cases and con-
trols. Only three genes (SUSD1, GBA and MFSD7) had significant (P < 0.05) differential expression in either males 
or females. No gene exceeded a 10% difference in gene expression between T1D cases and controls (Fig. 3H–K), 
and none of the viral infection signature genes were differentially expressed at any time point (Fig. 3L, M).

Dynamic changes in purple and blue module connectivity between T1D cases and con‑
trols. Modular Differential Connectivity (MDC) was highly dynamic over time for both blue and purple 
modules and both sexes (Fig. 4A–F). In the purple module, there was a greater than tenfold increase in con-
nectivity in females starting at 231 days before T1D diagnosis, with two primary peaks of high MDC occurring 
at 231 days (FDR P = 0.02) and at 21 days (FDR P = 0.002). Two peaks were observed in males, at 131 days and 
11 days, although the changes were not significant. In the blue module, the MDC in females was significantly 
increased at 351 days before T1D diagnosis and connectivity was increased by more than threefold in cases 
(FDR P = 0.03), and the MDC was significantly lower at 21 days (FDR P = 0.04). In males, MDC was increased 
(not significantly) at 191 days, but was significantly lower between 450 and 400 days (FDR P = 0.02) before T1D 
diagnosis Fig. 4G.

The enrichment of the purple module for genes involved in the response to viral infections suggested that 
module connectivity might be influenced by season. Although there was no clear seasonal MDC pattern in the 
600-day time-frame, control samples were partitioned into four groups representing the four seasons and com-
pared connectivity. Despite seasonal variance, connectivity in controls was lower than the values observed at the 
MDC peak in cases suggesting that season is not responsible for the differences in MDC (Supplementary Fig. 2). 
In addition, MDC was not correlated with uneven seasonal distribution of cases and controls (Supplementary 
Fig. 2). Although seasonal patterns have been observed for the incidence rate of  T1D19, these data suggest that 
changes in MDC are not driven by season.

Subtle differences in module gene expression partly underlie changes in connectivity. Dif-
ferences in gene expression were assessed between T1D cases and controls over time for all blue and purple 
module genes. Of 2229 module probes (1802 genes), only three genes (RILPL1, IL15RA and KIAA08952) were 
differentially expressed (FDR < 0.05). Module eigengene (ME) was used to capture gene expression at the entire 
module level and differential ME (DME) was used as a measure of differential modular expression between T1D 
cases and controls. DME displayed a similar pattern to that seen for MDC, where greater gene expression was 
associated with higher connectivity (though DME was significant [FDR < 0.05] only for females in the purple 
module) (Fig. 4H–K). These patterns were observed for both blue and purple modules in both sexes. The MDC 
in the purple module showed a marked increase within three weeks of development of T1D (21 days in females 
and 11 days in males), with no increase in DME during this time. These data suggest that longitudinal changes 
in module connectivity were largely due to subtle, but highly coordinated, changes in the aggregate expression 
of module genes.

Identifying genes driving dynamic changes in MDC. The temporal pattern of gene connectivity for 
genes with the largest changes in connectivity mimicked the MDC patterns (Fig. 5A–H). However, many genes 
demonstrated minor changes in connectivity. Hub genes, the most highly connected genes in a network, play 
important roles in biological  networks20 and  disease21,22. Given the difference in the temporal pattern of MDC 
between the sexes in both modules (Fig. 3A, B), the same set or different sets of genes were evaluated as drivers 
of MDC differences between sexes. The rank-order correlation between males and females for gene connectiv-
ity was 0.66 (P = 1.3 ×  10–226) for the blue module and 0.76 (P = 2.7 ×  10–94) for the purple module (Fig. 5I, J). 
The high correlation suggests that the same genes were involved in connectivity changes in both sexes, even 
though the timing of these changes differed. The most differentially connected genes (DCGs) were identified 
by subtracting gene connectivity in controls from T1D cases and their ranks summed across the sexes to obtain 
a final ranked list. The top 100 DCGs (Fig. 5I, J depicted in red) are hubs in their original modules, consistent 
with changes in MDC primarily driven by hub genes. The top 10 DCGs for each module are listed in Table 1 
(Supplementary Table 4 and Supplementary Table 5 contains the complete ranked gene list for purple and blue 
module respectively).

Large increases in connectivity for DCGs with links to T1D. Three of the top DCGs (Table 1) are Toll-
like receptor 8 (TLR8) from the blue module, and Sialic Acid Binding Immunoglobulin Like Lectin 1 (SIGLEC1) 
and Interferon induced with helicase C domain 1 (IFIH1) from the purple module (Table 1). These three genes 
have significantly (P < 0.05) increased GDC values that reflect the MDC changes observed in their respective 
modules (Fig. 6). The ratio of gene expression in T1D cases relative to controls was determined for each gene. 
In contrast to the large differences in connectivity, only subtle increases (< 5%) in expression between T1D cases 
and controls were observed. The timing of the increased GDC and expression were consistent for each gene.

Discussion
Over the last decade, significant progress has been made in elucidating genetic factors impacting T1D, yet we 
know little of how genetic and environmental inputs converge on molecular networks and how network altera-
tions influence T1D risk. We reconstructed whole blood gene co-expression networks in TEDDY using longitu-
dinal data in at-risk participants with observed conversion to islet autoimmunity and clinical T1D. The analysis 
of module connectivity as a function of time revealed widespread differences in connectivity between those who 
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progressed to T1D (cases) and those who did not (controls). Modules of co-expressed immune response genes 
with strong genetic association with T1D were identified. These critical modules demonstrated dynamic altera-
tions in connectivity preceding T1D diagnosis. Module-level changes in connectivity appeared to be driven by 
module hub genes, with most changes in connectivity at the gene-level were due to subtle differences in gene 
expression. These data, for the first time, demonstrate the plasticity of longitudinal gene co-expression relation-
ships, highlight the limitations of disease transcriptomics studies investigating disease at a single time point after 
diagnosis, and inform our understanding of T1D.

In this study, we observed network-wide changes in connectivity between T1D cases and controls over time. 
Though we did not know what to expect a priori, our results are in line with other network studies of disease. For 
example, Zhang et al.12 compared MDC in brain co-expression network modules between late-onset Alzheimer’s 
disease patients and controls. They found that over half (54%) of identified modules had higher connectivity in 
cases compared to controls, at a single time-point. In addition, 4.5% had lower connectivity in cases compared to 
controls. Therefore, it is not surprising that in our study MDC differed between cases and controls during at least 
one time-point for all network modules. Because of the longitudinal nature of our data, we were able to rigorously 
compare the relationship between differential expression and MDC. We observed that most, but not all, of the 
differences in MDC were likely due to subtle changes (< 5%) in expression between cases and controls. This sug-
gests that connectivity “amplifies” small, otherwise undetectable, changes in gene expression. This amplification 
effect likely underlies the widespread network changes we observed in MDC. It also demonstrates that potentially 
important biological changes in network homeostasis occur independent of detectable changes in expression.

One challenge with co-expression network analysis (along with all transcriptomics and other “-omic” stud-
ies) is establishing causality. Do network changes influence disease or are they just responding to a difference in 
disease state? This was especially key for this study given that changes in MDC did little to highlight modules of 
interest. To address this limitation, we identified modules that were enriched for GWAS  genes13. We and others 
have shown that such modules are more likely to be causally related to  disease7,13. Hence, the strong genetic link 
between the two modules identified and T1D suggest these modules capture changes that have a direct role in 
driving the initiation of islet autoimmunity or progression to T1D.

Interestingly, we observed that the timing and magnitude of changes in connectivity, but not the participat-
ing genes, differed between males and females in the purple and blue modules. Sex differences are well docu-
mented for auto-immune diseases, where females, in general, have stronger immune  responses23. For instance, 
interferon response and neutrophil percentage is higher in females than in males, in the context of  disease23,24. 
Whereas some of the sex differences are influenced by sex hormones, differences in pediatric cases are thought 
to be due to genetic  differences23. Compared to other auto-immune diseases, there is not a strong female bias in 
T1D  incidence25. However, in TEDDY, the progression rate after multiple islet autoantibodies was found to be 
higher in females than in  males26. In our study, overall connectivity in the purple and blue modules was higher 
in females and the peak in connectivity for both modules occurred earlier. Although our results support the 

Table 1.  Top 10 differentially connected genes for blue and purple modules. *Cell type proxy genes identified 
by Zhernakova et al.16 or viral infection signature genes identified by Zaas et al.17 Differential Connectivity was 
calculated by dividing connectivity in cases by controls and significance was calculated by permutations.

Module
DCG (ordered 
by rank)

Infection/cell 
type signature 
gene*

Differential 
connectivity 
(peak) females

Differential 
connectivity 
(peak) males

Differential connectivity 
p value (MDC peak) 
females

Differential 
connectivity p value 
(MDC peak) males

Blue

TLR8 3.65 5.18 0.02 0.01

KCNJ15 Neutrophils 3.89 6.76 0.02 0.02

FCGR2A 3.09 4.97 0.04 0.05

BEST1 Neutrophils 3.99 3.34 0.04 0.07

UBR2 5.29 5.67 0.03 0.03

ALPK1 3.14 4.54 0.05 0.03

PGCP 6.62 4.27 0.01 0.05

FPR2 4.92 3.75 0.02 0.03

PLBD1 7.76 6.34 3 ×  10–3 0.02

MXD1 Neutrophils 2.81 3.25 0.05 0.03

Purple

SAMD9 16.52 3.76 6 ×  10–3 0.06

MX2 9.90 6.52 0.03 0.04

CMPK2 Monocytes 14.12 7.56 0.04 0.03

SIGLEC1 Infection 1726.99 12.76 2 ×  10–3 0.03

USP18 30.03 8.99 2 ×  10–3 0.04

IFIH1 15.25 3.47 6 ×  10–3 0.06

DDX58 Infection 8.46 9.08 0.03 0.02

OASL Infection 8.30 4.37 0.13 0.05

CXCL10 Infection 37.82 11.90 9 ×  10–3 0.04

USP41 1738.34 16.86  < 1 ×  10–4 0.06
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idea that the same mechanisms underlie T1D development and progression in males and females, the response 
to genetic and environmental risk factors may differ and cause the difference observed in timing of connectivity 
increases before T1D.

Our analysis of the purple and blue modules suggest they represent the activity of distinct immune cell types. 
The purple module was enriched for interferon signaling genes, viral infection signature genes, differentially 
expressed genes in EBV infected B-cell and monocyte/macrophage proxy genes. The purple module genes also 
overlap genes of an IRF7-driven inflammation network (IDIN) that was derived from isolated  monocytes9. 

Figure 6.  Gene connectivity (upper) and gene expression (lower) for TLR8 (blue module) and IFIH1 and 
SIGLEC1 (purple module). Gene differential connectivity P values < 0.05 are shown as circles.
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Increased interferon signaling preceding T1D diagnosis has been  reportedx27. However, the mechanisms by 
which interferon signaling alters the immune response and T1D remain elusive. A recent study found that 
type I interferon potentiates β-cell-reactive CD8 + T-Cell  cytotoxicity26. In addition, type I interferon promotes 
inflammatory monocytes and helps sustain chronic  inflammation28. This suggests, that while interferon signal-
ing allows for effective clearance of viral infections, it might potentiate inflammation within the islet cells. These 
results are consistent with previous studies reporting a potential association between viral infections and  T1D29.

The blue module was enriched for neutrophil signature genes and genes differentially expressed in EBV 
infected B-cells. It was also enriched for IDIN genes, although not as strong as the purple module. Neutrophils 
direct and interact with many immune cells such as macrophages and dendritic cells. They both regulate the 
innate and the adaptive immune  responses30–32 and are thought to play an important role in T1D and other auto-
immune  diseases30,33. Neutrophils are believed to perform a large number of roles in autoimmunity, including 
antigen presentation, activation of T and B cells and direct tissue  damage31,33. In addition, reduced neutrophil 
levels have been associated with increased risk of  T1D34,35.

Due to the scale-free properties of co-expression networks, networks consist of a few highly connected genes 
(hub genes) and a large number of lowly connected genes. In most networks, hub genes are thought to funda-
mentally determine the behavior of networks and have been shown to play important roles in  disease36–39. We 
demonstrated that genes whose connectivity changes the most over time between cases and controls were often 
hub genes. If the perturbations observed here do truly impact T1D then it is likely that the identified hubs play 
a major role in T1D development and progression. We identified genes with known roles in T1D such as IFIH1 
among the list of differentially connected genes in the purple and blue modules. IFIH1, which encodes MDA5 
(Melanoma Differentiation-Associated protein 5), binds viral dsRNA and initiates type I and type III interferon 
response. Variants in IFIH1 have been associated with T1D and other autoimmune  diseases9,40, and have been 
linked to increased basal and ligand triggered interferon I  response41. In addition to IFIH1, genes such as TLR8, 
functions in activation of innate immunity and mediates production of cytokines, and SIGLEC1, functions in 
pathways related to innate immune system and antigen presentation, were also found to be differentially con-
nected genes. TLR and Siglec family members are known to function in immune  tolerance42,43 and therefore 
may also play an important role in progression to T1D.

Our study does have limitations. Although, T1D is a heterogeneous  disease44,45 the TEDDY design generated 
a relatively homogenous group. We sorted samples based on the offset to T1D diagnosis, assuming that the rate 
of progression is approximately the same for all T1D cases. Our rationale for this was that all TEDDY subjects 
have high-risk HLA haplotypes and in this study all cases developed T1D at relatively young age (mean diagno-
sis age is 3 years). Additionally, because we were only able to track changes in connectivity over a time period 
of 600 days, half of the cases were taken after seroconversion. This only allows us to identify factors associated 
with progression of T1D, rather than autoimmunity. To look into factors associated with initiation of islet auto-
immunity, we would need to limit the analysis to cases that were collected prior to seroconversion; however, 
statistical limitations due to the smaller size of the subgroup limited our ability to establish stable networks and 
therefore restricted us from making biological insights into factors that play a role in initiation of islet autoim-
munity. Due to the unique TEDDY study design, we were not able to validate our findings in an independent 
cohort. Hence, caution should be practiced in generalizing our results beyond the scope of this study, especially 
regarding seroconversion and selected HLA subgroups.

In conclusion, we observed differences in the connectivity of immune function genes with genetic links to 
T1D that preceded disease development. These changes were highly dynamic as a function of time before T1D 
diagnosis. Our data suggest that gene–gene relationships are much more plastic than previously appreciated, 
which has important implications for network and transcriptomic studies of disease. These results also increase 
our understanding of the molecular networks and genes influencing T1D.

Methods
TEDDY design. The TEDDY study is a prospective cohort study funded by the National Institutes of  Health46. 
The primary goal is to identify environmental causes of type 1 diabetes. TEDDY includes six clinical research 
centers—three in the US: Colorado, Georgia/Florida, Washington and three in Europe: Finland, Germany, and 
Sweden. A detailed study design has been previously described. For all study participants, written informed con-
sents were obtained from a parent or primary caretaker, separately, for genetic screening and participation in pro-
spective follow-up. The present study was approved by local U.S. Institutional Review Boards and European Ethics 
Committee Boards and is monitored by an External Evaluation Committee formed by the National Institutes of 
Health. All methods were carried out in accordance with relevant guidelines and regulations.

Gene expression data. Gene expression was measured using the Illumina HumanHT-12 v4.0 expression 
BeadChip. Quality assessments were performed by boxplots of intensity values, plotting control probes and 
estimating the proportion of expressed genes in samples. The BASH  method47 was used for beads artifact detec-
tion, which takes local spatial information into account when determining outliers. Background correction and 
normalization processes was performed to reduce differences due to technical variation while conserving true 
biological effects.

We filtered the data set based on population structure using principal component analysis. We removed all 
individuals of non-European ancestry. In addition, we calculated pairwise correlation for all samples and removed 
samples with mean correlation less than 0.95.

The final cohort consisted of 385 children including 60 T1D cases (30 males/ 30 females) and 325 T1D nega-
tive controls (171 males/ 154 females). In total, the dataset contains 1921 samples, with an average number of 
6.7 samples per individual in cases and 4.7 in controls. The oldest children were 6 years of age.
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For our time course analysis, we grouped samples based on their offset in days to T1D diagnosis. Specifically, 
we focused on a timeframe starting 600 days before and ending at T1D diagnosis. In steps of 10 days, we identi-
fied the sample from each individual collected closest to this particular time point. We only included samples 
that were drawn with an offset of less than 100 days. For each sample at each time-point, we identified a control 
sample that was matched regarding age and gender. A control was defined as an individual not diagnosed with 
T1D and without persistent confirmed autoantibody. We generated two sets of controls and compared cases 
with the average in controls. At the start of our analysis time frame, 30 of 60 T1D samples were taken after sero-
conversion (13 males, 17 females). See Supplementary Table 6 for details regarding age at seroconversion, age at 
diagnosis and gender and Supplementary Fig. 3 for sample distribution at each time-point.

GWAS implicated genes. We identified genes implicated by GWAS using the latest GWAS fine mapping 
on  T1D14. We annotated all 2021 credible T1D SNPs (46 loci) using the annotation database SCAN (http:// www. 
scandb. org/). For each SNP, we identified the host gene, the right and left flanking genes and potential eQTL 
genes (P < 1 ×  10–4 in CEU). This approach led to a total of 444 GWAS implicated genes (Supplementary Table 2).

Differential expression and module eigengene. We used a two-sided t-test to estimate statistical sig-
nificance of differential expression. We adjusted the p value threshold based on Bonferroni correction (0.05/
number of tests, i.e. probes).

As a measure of module expression, we computed the module eigengene (ME), which is the first principal 
component (PC) calculated via principal component analysis (PCA). For this we used the R library “prcomp”. 
The rotation matrix (matrix of the loadings, i.e. eigenvectors) was computed using the reference network, for 
each module respectively. For each time point, we calculated the ME values by rotating the expression data using 
the PCA rotation matrix of the reference network. By using the same rotation, we ensured that the same ME 
was used for all time-points. As for differential gene expression, t-test was used to estimate difference between 
ME values in cases and controls.

Weighted gene co‑expression network analysis. Network analysis was performed using the WGCNA 
R  package11. We selected a power threshold of 12 using the scale-free topology criterion. Modules (groups of co-
expressed genes) are found by average linkage hierarchical clustering, which uses the topological overlap measure 
as dissimilarity. To achieve the clustering, we chose a cut off height of 0.25. Because of the high number of genes, 
we used the blockwiseModules function with a maximum block size of 20,000 and a minimum module size of 30.

Modular connectivity and gene connectivity. As a measure of gene co-regulation, we calculated the 
connectivity for each gene and module. Gene wise, the connectivity is defined as the sum of connection strengths 
with the other module genes: ki =

∑

u �=iaui , where aij is the correlation to the power of 8 between gene i and j. 
The gene connectivity (GC) is defined as: GCi =

∑N
j=1kij . We used the topological overlap matrix (as described 

by Langefelder and  Hovath11) instead of adjacency matrix for modular connectivity (MC). tij is calculated as:

where lij =
∑

uaiuauj , k =
∑

uaiu and the index u runs across all nodes of the network.
MC is calculated by: MC =

∑N−1
i=1

∑N
j=i+1tij and the modular differential connectivity is:

Significance was calculated through false discovery rate, with 1000 permutations (M). We differentiate two 
scenarios, gain of connectivity (MDC > 1) and loss of connectivity (MDC < 1):

Differential hub genes and differential connected genes. To identify genes highly connected in 
cases but not highly connected in controls (differential hub genes; DHG), we subtracted GC in controls from GC 
in cases: δHi = GCicases − GCicontrols . To quantify the difference between cases and controls, we calculated the dif-
ferential connectivity. Analogue to MDC, differential gene connectivity (GDC) was defined as the ratio between 
GC in cases and controls:

tij =

{

lij+aij
min{ki ,kj}+1−aij

1

ifi �= j

ifi = j

MDC
(

x, y
)

=

∑N−1
i=1

∑N
j=i+1t

x
ij

∑N−1
i=1

∑N
j=i+1t

y
ij

FDRMDC>1 =
1

M

M
∑

p=1

MDC
(

x, y
)

> MDC(xp, yp)

FDRMDC<1 =
1

M

M
∑

p=1

MDC
(

x, y
)

< MDC(xp, yp)

GDC = GCicases/GCicontrols .

http://www.scandb.org/
http://www.scandb.org/
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Significance was estimated through false discovery rate (as done for MDC), with 1000 permutations.

Data availability
Gene Expression data have been deposited in NCBI’s database of Genotypes and Phenotypes (dbGaP) with the 
primary accession code phs001562.v1.p1.
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