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SUMMARY

Motivated by the study of the molecular mechanism underlying type 1 diabetes with gene expression data
collected from both patients and healthy controls at multiple time points, we propose a hybrid Bayesian
method for jointly estimating multiple dependent Gaussian graphical models with data observed under
distinct conditions, which avoids inversion of high-dimensional covariance matrices and thus can be
executed very fast. We prove the consistency of the proposed method under mild conditions. The numerical
results indicate the superiority of the proposed method over existing ones in both estimation accuracy and
computational efficiency. Extension of the proposed method to joint estimation of multiple mixed graphical
models is straightforward.

Keywords: Data integration; Meta-analysis; Multiple Gaussian graphical models; ψ-Learning.

1. INTRODUCTION

Type 1 diabetes (T1D) is one of the most common autoimmune diseases. The Environmental Determinants
of Diabetes in the Young (TEDDY) study is designed to identify environmental exposures triggering islet
autoimmunity and T1D in genetically high-risk children. A large dataset has been collected through the
study, including clinical data, genetic data, and demographical data. While great efforts have been made
for identifying the genetic and environmental factors that contribute to the etiology of the disease, the
molecular mechanism underlying the disease is still far from understanding. To enhance our understanding
to the molecular mechanism, this work aims to learn gene regulatory networks (GRNs) by integrating
the gene expression data measured from both the patients and healthy controls at multiple time points.
Figure 1 shows the structure of the data, where the gene expression was measured for each of the case
and control children at nine time points within 4 years of age. How to integrate the data collected under
the 18 distinct conditions have posed a great challenge on the current statistical methods.

During the past decade, a variety of approaches have been proposed for estimating multiple GRNs
with data collected under multiple distinct conditions. These approaches can be roughly grouped into two
categories, namely, regularization and Bayesian.
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234 B. JIA AND OTHERS

Fig. 1. Structure of the T1D data considered in the article, where the numbers represent nine time points at which gene
expression data were collected and the arrows represent joint estimation of Gaussian graphical models by integrating
the data across different time points and case–control groups.

The regularization approaches work with some specific penalty functions that enhance the shared
structure of the graphical models. For example, Guo and others (2011) employed a hierarchical penalty that
targets the removal of common zeros in the precision matrices across conditions. Danaher and others (2014)
employed penalized fused lasso or group lasso penalties that encourage shared elements of the precision
matrices. Chun and others (2015) employed a class of nonconvex penalty functions that regularize the
common and condition-specific structures hierarchically. A shortcoming of these approaches is that they
assume the observations under different conditions are independent. This is hard to be satisfied for the
temporal data, where the observations were taken from the same cohort at multiple time points. To address
this issue, Zhou and others (2010) and Qiu and others (2016) proposed to model the temporal data in a
high-dimensional time series and then estimate the time-varying graphical structure using a nonparametric
method by assuming that the covariance changes smoothly over time. These approaches usually require
the time series to be fairly long, say, 50 or longer.

As an analog to regularization approaches, Bayesian approaches enhance the shared structure of multiple
graphical models by employing some specific priors. For example, Peterson and others (2015) links the
estimation of graph structures via a Markov random field (MRF) prior which encourages common edges.
However, since this method involves repeated calculations of concentration matrices (i.e., inverse of
covariance matrices), it is only applicable when the graph is not very large. To accelerate computation,
Lin and others (2017) proposed a Bayesian analog of the neighborhood selection method (Meinshausen
and Bühlmann, 2006) to learn the structure of multiple graphical models with the MRF prior.

In this article, we propose a fast hybrid Bayesian integrative analysis (FHBIA) method for jointly
estimating multiple Gaussian graphical models. The proposed method consists of both frequentist and
Bayesian components. First, it applies a ψ-learning method, which is a frequentist method, to transform
the original data to edge-wise ψ-scores. The ψ-score, which forms an equivalent measure of the partial
correlation coefficient, provides a good summary for the graph structure information contained in the
data under each condition. Then, it applies a Bayesian method to model the ψ-scores for edge clustering
and applies a meta-analysis method for integrating data information across distinct conditions. Finally,
it applies a multiple hypothesis test method for edge determination. Due to the use of the ψ-score trans-
formation, FHBIA avoids inversion of high-dimensional covariance matrices and thus can be executed
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Hybrid Bayesian learning of multiple gene networks 235

Fig. 2. Diagram of the FHBIA method: (i) datasets X (k)’s for k = 1, 2, . . . , K are first transformed to edgewise
ψ-scores ψ(k)’s through the step of ψ-score transformation; (ii) ψ-scores are processed through the step of Bayesian
clustering and meta-analysis to get Bayesian integratedψ-scores denoted by ψ̂(k)’s; (iii) Bayesian integratedψ-scores
are further processed through the step of JED to get graph estimates Ĝ(k)’s.

very fast. The multiple hypothesis test produces a q-value (Storey, 2002), which can be viewed as an
uncertainty measure, for each potential edge of the multiple Gaussian graphs. We prove consistency of
the proposed method under mild conditions and illustrate its performance using simulated and real data
examples. The numerical results indicate the superiority of the proposed method over the existing ones in
both estimation accuracy and computational efficiency.

2. FAST HYBRID BAYESIAN INTEGRATIVE ANALYSIS

The FHBIA method consists of a few steps, including ψ-score calculation, Bayesian clustering and
meta-analysis, and joint edge detection (JED), with the diagram shown in Figure 2.

2.1. ψ-Score transformation

Suppose that we have a dataset of p variables observed under K distinct conditions. Let X (k) =
(X (k)

1 , . . . , X (k)
nk
)T denote the dataset observed under condition k , where nk denotes the sample size under

condition k; and X (k)
i = (X (k)

i1 , . . . , X (k)
ip )

T is a p-dimensional random vector distributed according to the
multivariate normal distribution N (μk ,�k), and μk and �k are the mean and covariance matrix of the
distribution, respectively. The sample size nk is not necessarily the same for all conditions. Without loss
of generality, we assume that μk is a zero vector for all k . With slight abuse of notation, we let X1, . . . , Xp

denote the p variables that are common for all K datasets. Let V = {1, 2, . . . , p} denote the index set of
the variables, where each variable is called a node in the terminology of graphs.

We adopt the ψ-learning algorithm to transform each dataset X (k) to edge-wise scores independently.
The ψ-learning algorithm first produced a ψ-partial correlation coefficient for each pair of nodes. Denote
the ψ-partial correlation coefficients by (ψ̃ij) for all i, j ∈ V , which are equivalent to the true partial
correlation coefficients (ρij|V\{i,j}) for determining the structure of the Gaussian Graphical Model (GGM)
in the sense that ψ̃ij = 0 ⇐⇒ ρij|V\{i,j} = 0, ∀ i, j ∈ V . Further, the ψ-learning algorithm converts the
ψ-partial correlation coefficients to ψ-scores, denoted by (ψij), via Fisher’s transformation and the probit
transformation such thatψij ∼ N (0, 1) approximately holds under the null hypothesis H0 : ρij|V\{i,j} = 0 for
any i, j ∈ V . Therefore, theψ-score can be used as a test statistic for identifying nonzero partial correlation
coefficients and thus the structure of the GGM. The use ofψ-scores enables the proposed method to avoid
inversion of high-dimensional covariance matrices that the existing Bayesian methods often need to deal
with, and hence the proposed method can be executed very fast. Refer to the supplementary material
available at Biostatistics online for the detail of the ψ-learning algorithm.
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236 B. JIA AND OTHERS

Since the GGM is undirected, we have a total of p(p − 1)/2 ψ-scores to calculate for each dataset
X (k). For convenience, we re-arrange the ψ-scores for each dataset X (k) into an N -vector ψ(k) with
N = p(p − 1)/2 and re-arrange the ψ-scores for all K datasets into an N × K matrix (ψ(k)

l ) with
l = 1, 2, . . . , N and k = 1, 2, . . . , K .

2.2. Bayesian clustering and meta-analysis

Consider the ψ-scores (ψ(k)
l ), where each pair (l, k) corresponds to one candidate edge in the graph G(k).

Let e(k)l be the indicator for the status of edge l in the underlying graph G(k); e(k)l = 1 if the edge exists
and 0 otherwise. The e(k)l ’s work as latent variables in FHBIA. Conditioned on e(k)l , we assume that ψ(k)

l ’s
are mutually independent and follow a two-component mixture Gaussian distribution given by

p(ψ(k)
l |e(k)l ) =

{
N (μl0, σ 2

l0), if e(k)l = 0,
N (μl1, σ 2

l1), if e(k)l = 1,
(2.1)

for l = 1, 2, . . . , N and k = 1, 2, . . . , K . When e(k)l = 0, ψ(k)
l ’s have a value close to 0, otherwise, ψ(k)

l ’s
might have a large negative or positive value depending on the sign of the partial correlation coefficient.
Under the assumption that the structure of the GGM changes only slightly under adjacent conditions,
it is reasonable to assume that for each l, the sign of ψ(k)

l ’s are not changed when the edge exists;
therefore, ψ(k)

l ’s can be modeled by a two-component mixture Gaussian distribution. In some cases, e.g.,
when K grows, a three-component mixture Gaussian distribution might be needed, which allows us to
handle the scenario that an edge is included in multiple graphs, but its partial correlation coefficients
have different signs in different graphs. The derivation under this scenario is given in the supplementary
material available at Biostatistics online, which is a simple extension of the deviation presented below.
Regarding the two-component mixture distribution (2.1), we further note that μl0 can be simply set to 0
considering the physical mean of ψ-scores. However, as shown below, this general setup does not cause
any computational difficulty.

Essentially, we have formulated the problem of inference of e(k)l ’s as a clustering problem, grouping
ψ
(k)
l to up to two different clusters. For the case of three-component mixture distribution, this is similar.

Let ψ l = (ψ
(1)
l , . . . ,ψ(K)

l ) and el = (e(1)l , . . . , e(K)l ). Conditioned on el , the joint likelihood function of ψ l

is given by

p(ψ l|el ,μl0, σ 2
l0,μl1, σ 2

l1) =
∏

{k:e(k)l =0}
φ(ψ

(k)
l |μl0, σ 2

l0)
∏

{k:e(k)l =1}
φ(ψ

(k)
l |μl1, σ 2

l1), (2.2)

where φ(.|μ, σ 2) is the density function of the Gaussian distribution with meanμ and variance σ 2. Taking
a product of (2.2) over l = 1, 2, . . . , N , we have the joint distribution of all ψ-scores (ψ (k)

l ) conditioned
on el’s and other parameters. Then, using the Bayes theorem, e(k)l ’s can be inferred with an appropriate
priors of el’s and other parameters. For example, the MRF prior used in Peterson and others (2015) and
Lin and others (2017) can again be used here as the prior of el’s. In this case, the posterior distribution
can be sampled from using a Monte Carlo Markov chain (MCMC) algorithm.

Instead of specifying a joint prior distribution for all el’s, we assume in this article that el’s are a priori
independent for different l’s, as we believe that the neighboring dependence of the Gaussian graphical
network has been accounted for in calculation of the ψ-scores. To enhance shared edges among distinct
conditions, we consider two types of priors for el’s, namely, temporal prior and spatial prior, with borrowed
terms from geostatistics. Figure 3 illustrates the application scenarios of the two types of priors. The
temporal prior can be used in the scenario that the networks G(k)’s evolve sequentially along with the index
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Hybrid Bayesian learning of multiple gene networks 237

Fig. 3. Illustration of application scenarios of the temporal and spatial priors: (a) networks evolve along with time
(temporal prior); (b) networks evolve independently from a common structure (spatial prior).

k = 1, 2, . . . , K . In this scenario, it is quite common to consider the index k as the time of experiments.
The spatial prior can be used in the scenario that the networks or precision matrices evolve independently
from a common structure. For example, the temporal prior can be applied when we construct genetic
networks using a set of gene expression data measured for the same tissue at multiple time points, and the
spatial prior can be applied if the gene expression data are measured for different tissues at the same time
point.

2.2.1. Temporal prior To enhance the similarity of the networks between adjacent conditions, we let el

be subject to the following prior distribution

p(el|q) = q
∑K−1

i=1 c(i)l (1 − q)
∑K−1

i=1 (1−c(i)l ), (2.3)

where c(i)l = |e(i+1)
l −e(i)l | indicates the change of the status of the edge l from condition i to condition i+1,

and q is a prior hyperparameter representing the prior probability of edge status changes. In this article,
we assume that q follows a beta distribution Beta(a1, b1), where a1 and b1 are pre-specified parameters.
Further, we letμl0 andμl1 be subject to an improper uniform distribution, i.e., π(μl0) ∝ 1 and π(μl1) ∝ 1,
and let σ 2

l0 and σ 2
l1 be subject to an inverted-gamma distribution, i.e., σ 2

l0, σ 2
l1 ∼ IG(a2, b2), where a2 and

b2 are pre-specified constants. Then the joint posterior distribution of (el ,μl0, σ 2
l0,μl1, σ 2

l1, q) is given by

π(el ,μl0, σ 2
l0,μl1, σ 2

l1, q|ψ l) ∝ p(ψ l|el ,μl0,μl1, σ 2
l0, σ 2

l1)π(μl0, σ 2
l0,μl1, σ 2

l1)π(el|q)π(q),

where π(·)’s denote the respective prior distributions. After integrating out the parameters μl0, σ 2
l0, μl1,

σ 2
l1, and q, we have the marginal posterior distribution of el given by
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238 B. JIA AND OTHERS

π(el|ψ l)∝
�(a1 + k1)�(b1 + k2)

�(a1 + k1 + b1 + k2)︸ ︷︷ ︸
(H)

× 1√
nl0
(

1√
2π
)nl0�(

nl0 − 1

2
+ a2)

⎡
⎢⎣1

2

∑
{k:e(k)l =0}

(ψ
(k)
l )2 −

(
∑

{k:e(k)l =0} ψ
(k)
l )2

2nl0
+ b2

⎤
⎥⎦

−( nl0−1
2 +a2)

︸ ︷︷ ︸
(I)

× 1√
nl1
(

1√
2π
)nl1�(

nl1 − 1

2
+ a2)

⎡
⎢⎣1

2

∑
{k:e(k)l =1}

(ψ
(k)
l )2 −

(
∑

{k:e(k)l =1} ψ
(k)
l )2

2nl1
+ b2

⎤
⎥⎦

−( nl1−1
2 +a2)

︸ ︷︷ ︸
(J)

(2.4)

when nl0 > 0 and nl1 > 0 hold, where nl0 = #{k : e(k)l = 0}, nl1 = #{k : e(k)l = 1}, k1 = ∑K−1
i=1 c(i)l and

k2 = K − 1 − k1. When nl0 = 0 and nl1 > 0, we have π(el|ψ l) ∝ (H )× (J ). When nl0 > 0 and nl1 = 0,
we have π(el|ψ l) ∝ (H )× (I ).

Given K distinct conditions, the total number of possible configurations of el is 2K . When K is small, we
can provide an exhaustive evaluation of the 2K configurations. That is, for each possible configuration of el ,
we can calculate its posterior probability and integrated ψ-scores exactly. For each possible configuration
eld for d ∈ {1, 2, . . . , 2K }, we denote the posterior probability by πld and the integrated ψ-score by
ψ̄ ld = (ψ̄

(1)
ld , . . . , ψ̄ (K)

ld ). According to Stouffer’s meta-analysis method (Stouffer and others, 1949), which
is also known as the inverse normal method for combining p-values (Zaykin, 2011), we define the integrated
ψ-score as

ψ̄
(k)
ld =

⎧⎨
⎩

∑
{i:e(i)ld =0} wiψ

(i)
l /

√∑
{i:e(i)ld =0} w2

i , if e(k)ld = 0,∑
{i:e(i)ld =1} wiψ

(i)
l /

√∑
{i:e(i)ld =1} w2

i , if e(k)ld = 1,
(2.5)

for k = 1, . . . , K , where the weight wi might account for the size or quality of the samples collected under
each condition. In this article, we set wi = 1 for all i = 1, . . . , K . Such a weighted average score integrates
data information on the edge across all conditions. Then the Bayesian Stouffer integrated ψ-score, or
Bayesian integrated ψ-score in short, is given by

ψ̂
(k)
l =

2K∑
d=1

πldψ̄
(k)
ld , l = 1, 2, . . . , N ; k = 1, 2, . . . , K . (2.6)

When K is large, the πld’s can be estimated with a short MCMC run, say, by running the Gibbs sampler
(Geman and Geman, 1984) for a few hundred iterations. Since the MCMC can be run in parallel for
different l’s, the computation is not a big burden in this case.

It is interesting to point out that the Bayesian Stouffer integrated ψ-score ψ̂ (k)
l is different from the

conventional Bayesian estimator of μ(k)l . The latter is given by

ψ̂
(k)
B,l =

2K∑
d=1

πldψ̄
(k)
B,ld , k = 1, 2, . . . , K , (2.7)
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Hybrid Bayesian learning of multiple gene networks 239

and

ψ̄
(k)
B,ld =

⎧⎨
⎩

∑
{i:e(i)ld =0} ψ

(i)
l /#{i : e(i)ld = 0}, if e(k)ld = 0,∑

{i:e(i)ld =1} ψ
(i)
l /#{i : e(i)ld = 1}, if e(k)ld = 1.

(2.8)

It is easy to see that the Bayesian Stouffer integrated ψ-score amplifies the Bayesian averaged ψ-score
(2.7) by a factor between 1 and

√
K . Such amplification makes the two clusters of edges more separable

in the scores and, as pointed out in the Proof of Lemma 3.4 (in the supplementary material available at
Biostatistics online), helps to improve the power of the proposed method by reducing the false negative
error. Also, we would point out that for each l, if the edge clustering pattern d is correct and e(k)ld = 0,
then the Stouffer integrated ψ-score ψ̄ (k)

ld has a constant variance of 1, while the simply averaged ψ-score
ψ̄
(k)
B,ld has a varied variance depending on the value of #{i : e(i)ld = 0}. Therefore, the Bayesian Stouffer

integrated ψ-scores are more comparable than the Bayesian averaged ψ-scores in edge determination.

2.2.2. Spatial prior To enhance our prior knowledge that there exists a common structure for all the
networks from which they evolve independently, we let el’s be subject to the prior distribution

p(el|q) = q
∑K

i=1 c∗(i)
l (1 − q)

∑K
i=1(1−c∗(i)

l ), (2.9)

where c∗(i)
l = |e(i)l − emod

l | indicates the status change of the edge l at condition i from emod
l , and emod

l is the
mode of el and represents the common status of the edge l across all networks. With this prior distribution,
the posterior distribution π(el|ψ l) can also be expressed in the form of (2.4) but with k1 = ∑K

i=1 c∗(i)
l and

k2 = K − k1.

2.3. Joint edge detection

To jointly estimate the structure of multiple GGMs based on the Bayesian Stouffer integrated ψ-scores
(2.6), a multiple hypothesis test can be applied. The multiple hypothesis test classifies the integrated ψ-
scores into two classes, presence of edges and absence of edges. In this article, we adopt the empirical
Bayesian method developed by Liang and Zhang (2008) for the multiple hypothesis test, which models
the integrated ψ-scores by a mixture distribution f (z) = π0f0(z)+ π1f1(z), where z denotes an integrated
ψ-score; π0 and π1 denote the probabilities of edge absence and edge presence, respectively; and f0(·) and
f1(·) denote the probability density functions of integratedψ-scores with edge absence and edge presence,
respectively. As in Liang and Zhang (2008), we parameterize f0 by an exponential power distribution,
and parameterize f1 by a mixture of exponential power distributions. The parameters π0, π1 and those
contained in f0(·) and f1(·) are estimated using the stochastic approximation method by minimizing the
Kullback–Leibler divergence between the density f (z) and the empirical one. The threshold values for
grouping the integrated ψ-scores into the classes f0 and f1 are determined according to the value of α2,
a pre-specified false discovery rate level. How to specify the value of α2 will be discussed in Section
2.4. Note that this multiple hypothesis test method allows for the dependence between test statistics,
i.e., integrated ψ-scores for this problem. Other methods that account for the dependence between test
statistics, e.g., the two-stage method by Benjamini and Yekutieli (2001), can also be applied here.

Finally, we would like to point out that the empirical Bayesian method used above produces a q-value
(Storey, 2002) for each potential edge of the multiple graphs. The q-value, like the p-value for the single
hypothesis test, provides an uncertainty measure for each potential edge.
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2.4. Parameter setting

FHBIA contains two free parameters, i.e., α1 and α2, which refer to the significance levels of the multiple
hypothesis tests conducted in correlation screening and JED, respectively. Following the suggestion of
Liang and others (2015), we set α1 = 0.2 and α2 = 0.05 as the default values. Otherwise, their values
will be stated in the context. In general, a high significance level of correlation screening will lead to
slightly large conditioning sets in calculation of ψ-partial correlation coefficients, which reduces the risk
of missing important variables in the conditioning sets. Including a few false variables in the conditioning
sets will not hurt much the accuracy of the ψ-partial correlation coefficients. As shown in Xu and others
(2019), the performance of the ψ-learning algorithm can be quite robust to the choice of α1. However,
the setting of α2 is quite free, which determines the sparsity of the resulting graphs. A smaller value of α2

might be used if sparse graphs are preferred.
In addition to the two free parameters, FHBIA contains four prior-hyperparameters, i.e., a1, b1, a2, and

b2. Since the probability q usually takes a small value, we set (a1, b1) = (1, 10) for its prior distribution
Beta(a1,b1). Since the variance of the ψ-scores is approximately equal to 1 under the null hypothesis that
the true partial correlation coefficient is equal to 0, we set (a2, b2) = (1, 1) for its prior distribution IG(a2,
b2). The same prior hyperparameter settings have been used in all examples of this article.

2.5. Consistency

Under the faithfulness assumption, sparsity assumption, and other regularity conditions for the joint
Gaussian distribution, e.g., the dimension p = O(exp(nδ)) is allowed to grow exponentially with the
sample size n for some constant 0 ≤ δ < 1 and the largest eigenvalue of the covariance matrix can
grow with n at a restricted rate, Liang and others (2015) showed that the multiple hypothesis test based
on the ψ-scores produces a consistent estimate for the GGM with data observed under single condition.
Essentially, Liang and others (2015) showed that the ψ-scores are separable in probability for the pairs
of nodes with edge absence and edge presence.

To accommodate the change from single condition to multiple conditions, we modified the assumptions
of Liang and others (2015) and added an assumption about K . Under the new set of assumptions, we proved
that the FHBIA method is consistent.

THEOREM 2.1 Assume (A1)–(A6) (see supplementary material available at Biostatistics online) hold. Then

P[Ê(k)

ζn
= Ẽ

(k)
n , k = 1, 2, . . . , K] ≥ 1 − o(1), as n → ∞,

where Ẽ
(k)
n = {(i, j) : ρij|V\{i,j}(k) �= 0, i, j = 1, . . . , p} denotes the true network under condition k , Ê

(k)

ζn

denotes the FHBIA estimator of Ẽ
(k)
n , and ζn denotes a threshold value of Bayesian integrated ψ-scores

based on which the edges are determined for all K graphs.

The proof of the theorem is given in the supplementary material available at Biostatistics online.
Theorem 2.1 implies that for all graphs there exists a common threshold with respect to which the Bayesian
integratedψ-scores are separable in probability for the pairs of nodes with edge presence and edge absence.
Here, we would like to highlight three points. First, as indicated by our proof [see inequality (S29) in
the Proof of Lemma 3.5 in supplementary material available at Biostatistics online], the data integration
step can indeed improve the power of proposed method. Second, following from the inequalities (S29)
and (S30) and the condition (A5) given in the supplementary material available at Biostatistics online,

we can conclude the sign consistency of the estimator Ê
(k)

ζn
; i.e., for any edge of the graph, the sign of
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the Bayesian integrated ψ-score has the same sign as the true partial correlation coefficient when the
sample size n becomes large. Third, the assumption imposed on K , i.e., K = O(nδ+2d+ε−1), is rather weak,
where δ, d, and ε are all some positive constants as defined in other assumptions and δ+ 2d < 1 (see the
supplementary material available at Biostatistics online). For example, we can choose ε = 1 − δ − 2d
and thus K = O(1). This is consistent with our numerical results; the method can perform very well even
with a small value of K .

3. SIMULATION STUDIES

3.1. Scenario with temporal priors

To illustrate the performance of the proposed FHBIA method under the scenario with temporal priors, we
consider three types of network structures, namely, autoregressive (AR), scale-free, and hub, which are
all allowed to change slightly with the evolvement of conditions. For all the types of structures, we fix
K = 4 and p = 200, and varied the sample size n = 100 and 500. We let�(k) denote the precision matrix
at condition k for k = 1, . . . , K . At each condition k , we generated 10 independent datasets of size n by

drawing from the multivariate Gaussian distribution N
(

0,
(
�(k)

)−1
)

.

For the AR network structure, the precision matrix at condition 1 is given by

�
(1)
i,j =

⎧⎪⎪⎨
⎪⎪⎩

0.5, if |j − i| = 1, i = 2, . . . , (p − 1),
0.25, if |j − i| = 2, i = 3, . . . , (p − 2),
1, if i = j, i = 1, . . . , p,
0, otherwise,

(3.10)

which represents an AR(2) graphical model. To construct �(2), we employed the following random edge
deleting–adding procedure: we first randomly removed 5% edges in �(1) by setting the corresponding
nonzero elements to 0, and then added the same number of edges at random by replacing zeros in �(1)

with the values drawn from the uniform distribution defined on [−0.1, −0.3] ∪ [0.1, 0.3]; to ensure �(2)

to be positive definite, we set the diagonal elements of �(2) to be the smallest absolute eigenvalue of �̃(2)

plus a small positive number, where �̃(2) is obtained from �(2) by setting the diagonal elements to zero.
In the same procedure, we generated �(3) conditioned on �(2) and then generated �(4) conditioned on
�(3). We note that similar procedures have been used in Peterson and others (2015) and Lin and others
(2017) to generate multiple precision matrices. For the scale-free and hub structures, we first generated
the precision matrix �(1) using the R package “huge,” then applied the random edge deleting-adding
procedure to generate �(k)’s for k = 2, 3, 4 in a sequential manner.

The FHBIA method was first applied to this example. To access the performance of the method,
we plot the precision-recall curves in Figure S1 of supplementary material available at Biostatistics
online. The same rule applies to other tables and figures included in the supplementary material avail-
able at Biostatistics online. The precision and recall are defined by precision = TP

TP+FP , recall =
TP

TP+FN , where TP, FP, and FN denote true positives, false positives, and false negatives, respec-
tively, as defined in Table S1 of supplementary material available at Biostatistics online. To draw
the precision-recall curves shown in Figure S1 of supplementary material available at Biostatistics
online, we fix the significance level of correlation screening to α1 = 0.2 and varied the value of
α2, the significance level of JED. The precision and recall values were calculated by cumulating the
TP, FP, FN, and TN values across all K conditions. In this article, we employ the precision-recall
curve instead of the Receiver Operating Characteristic (ROC) curve as the classification problem
involved in recovering the network structure is severely imbalanced, which contains a large number
of negative cases due to the network sparsity. As pointed out by Saito and Rehmsmeier (2015) and
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Davis and Goadrich (2006), the precision-recall curve can be more informative than the ROC curve in the
imbalanced classification scenario.

For comparison, the MRF method (Lin and others, 2017), fused graphical Lasso (FGL), and group
graphical Lasso (GGL) (Danaher and others, 2014) were applied to this example. The Matlab code of
the MRF is available at https://github.com/linzx06/Spatial-and-Temporal-GGM. Both FGL and GGL are
available in the R package JGL. For a thorough comparison, we also applied the original ψ-learning
algorithm to this example, for which the models under each condition were estimated separately. The
results are summarized in Figure S1 and Table S2 of supplementary material available at Biostatistics
online. The comparison indicates that FHBIA significantly outperforms the existing methods, especially
when the sample size is small. When the sample size is large, FHBIA, MRF, FGL, and GGL tend to
perform similarly for the scale-free and hub networks. It is not surprising that FHBIA always outperforms
the separated ψ-learning algorithm, which implies the importance of data integration for such high-
dimensional problems.

Table S3 of supplementary material available at Biostatistics online reports the CPU time cost by FGL,
GGL, MRF, separated ψ-learning and FHBIA for one dataset of AR(2) structure, where the CPU time
was measured on a Linux desktop with Inter Core i7-4790 CPU3.6Ghz. All computations reported in
this article were done on the same computer. The CPU times of these methods for the other two graph
structures are about the same. FGL is extremely slow for this example, as it needs to search over a grid
of possible values for an optimal setting of (λ1, λ2). The grid we used consists of 100 different pairs
of (λ1, λ2). Moreover, for each pair of (λ1, λ2), it needs to solve a generalized fused Lasso problem for
which a closed-form solution does not exist when K is greater than 2. Solving the generalized fused Lasso
problem is time consuming and has a computational complexity of O(p2K log K). The GGL is better as
for which there exists a closed-form solution to the regularized parameter optimization problem under
each setting of (λ1, λ2), although the optimal setting of (λ1, λ2) also needs to be searched over a grid of
100 points. The computational complexity of MRF is of O(p3) (Lin and others, 2017) while FHBIA is of
O(p22K), which can be pretty fast for a small value of K . The separated ψ-learning is a little more time
consuming than FHBIA because it needs to conduct multiple hypothesis tests under each condition.

3.2. Scenario with spatial priors

As in the scenario with temporal priors, we considered three types of network structures:AR(2), scale-free,
and hub. For each type of structures, we set K = 5 and p = 200, and tried two sample sizes n = 100
and n = 500. For AR(2), we first generated the precision matrix �(0) according to (2.1). Conditioned
on �(0), we generated the precision matrices �(k), k = 1, 2, . . . , 5, independently using the random edge
deleting–adding procedure as described in the scenario of temporal priors. For the other two types of
structures, we generated the precision matrices �(0) using the R package huge, and then generated �(k),
k = 1, 2, . . . , 5 independently using the random edge deleting–adding procedure. Given the precision
matrices, we then generated 10 independent datasets of size n by drawing from the multivariate Gaussian

distribution N
(

0,
(
�(k)

)−1
)

for each condition k .

The FHBIA, MRF, FGL, GGL, separatedψ-learning and graphical EM (Xie and others, 2016) methods
were applied to this example. The graphical EM algorithm was specially designed for jointly estimating
multiple dependent Gaussian graphical models under this scenario.

Figure S2 of supplementary material available at Biostatistics online shows the precision-recall curves
produced for two datasets by FHBIA, MRF, FGL, GGL, separatedψ-learning, and graphical EM. Table S4
of supplementary material available at Biostatistics online summarizes the performance of these methods
for all simulated datasets of this example. The comparison indicates that FHBIA significantly outperforms
all other methods, especially when the sample size is small.
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Table S5 of supplementary material available at Biostatistics online reports the CPU time cost by MRF,
FGL, GGL, separatedψ-learning, graphical EM, and FHBIA for one dataset of AR(2) structure. The CPU
times for the other two graph structures are about the same. For FGL, this example is even more time
consuming than the previous one, although it was run under exactly the same setting for the two examples.
One reason is that K has increased from 4 to 5. For FHBIA, the CPU time is not much increased compared
to the previous example.

4. TEDDY DATA ANALYSIS

This section applied the FHBIA method to the mRNA gene expression data collected in the study of
TEDDY. In the study, to reduce potential bias and retain study power while reducing the costs by limiting
the numbers of samples requiring laboratory analyses, the gene expression data were collected from the
nested matched case–control cohort.A subject who developed two primary outcomes, persistent confirmed
islet autoimmunity (i.e., the presence of one confirmed autoantibody, GADA65A, IA-2A, or IAA, on two
or more consecutive samples) and/or T1D, was defined as a case. The controls are randomly selected
among cohort members who have not yet developed the disease at the time a case is diagnosed. For each
subject, the gene expression data were collected at multiple time points within 4 years of age. Refer to
Lee and others (2014) for the detailed description for the study. Our goal is to integrate all the data to
construct one gene network under each distinct condition.

The dataset consists of 21 285 genes and 742 samples collected at multiple time points from a total
of 313 subjects. Among the 742 samples, half of them are for the case and half of them are for the
control. The dataset also contains some external variables for each patient, which include age (the time
of data collected), gender, race, race ethnicity, season of birth, number of older siblings, and country. To
simplify the analysis, we first filtered out some non-differentially expressed genes across the case and
control conditions. This was done by conducting a paired t-test for each gene at each time point and then
applied the multiple hypothesis test method by Liang and Zhang (2008) to identify the set of genes that
are significantly differentially expressed under the two conditions at least at one time point. With this
filtering process, 572 genes were selected for further study. Figure S3 of supplementary material available
at Biostatistics online shows the histogram of the ages of the samples. Based on this histogram, we selected
only the samples fallen into the first nine groups for the further analysis, where each mode of the histogram
is treated as a group. The respective group sizes are 29, 40, 49, 43, 32, 27, 27, 23, and 21, which are the
same for both the case and control. Since the samples were grouped in ages, the index k = 1, 2, . . . , 9 can
be understood as the time of experiments. In grouping the samples, we have ensured that in each group,
each sample corresponds to a different patient and thus the samples within the same group can be treated
as mutually independent. Since the sample size of each group is small, we set α1 = 0.05 and α2 = 0.01,
which are smaller than the default values.

To adjust the effect of external variables, we adopted the method proposed by Liang and others (2015).
Let W (k)

1 , . . . , W (k)
q denote the external variables observed at condition k . To adjust for their effects, we can

replace the empirical correlation coefficient used in the ψ-score calculation step by the p-value obtained
in testing the hypotheses H0 : βq+1 = 0 ↔ H1 : βq+1 �= 0 for the regression

X (k)
i = β0 + β1W (k)

1 + · · · + βqW (k)
q + βq+1X (k)

j + ε, (4.11)

where X (k)
i denotes the expression value of gene i measured at condition k , and ε denotes a vector of

Gaussian random errors. Similarly, we can replace the ψ-partial correlation coefficient calculated in the
ψ-score calculation step by the p-value obtained in testing the hypotheses H0 : βq+1 = 0 ↔ H1 : βq+1 �= 0
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for the regression

X (k)
i = β0 + β1W (k)

1 + · · · + βqW (k)
q + βq+1X (k)

j +
∑

s∈S(k)ij

γsX
(k)
s + ε, (4.12)

where S(k)ij is the separator of X (i) and X (j) under condition k . With the p-values, we can define the adjusted
ψ-score as ψ(k)

l = �−1(1 − p(k)l ), where p(k)l is the p-value obtained from equation (4.12) for edge l at
condition k .

For this dataset, the effect of all available demographical variables, including age (the time of data
collection), gender, race, race ethnicity, season of birth, number of older siblings, and country, have been
adjusted. With the adjusted ψ-scores, the FHBIA method is ready to be applied to construct the gene
networks. Given the complexity of the dataset, which contains case and control groups and multiple time
points for each group, we calculated the integratedψ-scores in two steps. First, we integrated theψ-scores
across nine time points under the case and control, separately. Then, for each time point, we integrated the
ψ-scores across the case and control conditions. In this way, all information of the data collected under the
18 conditions were integrated together. Figure 1 shows a schematic diagram for this two-step procedure.
Finally, we applied the multiple hypothesis test to the Bayesian integrated ψ-scores to determine the
structure of the gene networks under the 18 conditions. The total CPU time cost by FHBIA was 19.2 h,
which is pretty long as K = 9 is large. For a larger value of K , we might resort to MCMC for estimating
the posterior probabilities π(el|ψ l)’s.

Figure 4 shows the networks constructed by FHBIA for the case samples at nine time points. The
networks have identified quite a few hub genes, which refer to the genes with high connectivity. Table 1
shows the top 5 hub genes identified at each time point for the case samples. The lists of hub genes are
pretty stable. For example, RPS26P11 and RPS26 consistently appear as top 2 genes at all time points,
the gene ADAM10 appeared at five out of nine time points, and quite a few genes appeared twice or more
times, such as PRF1, POGZ, BCL11B, GGNBP2, and TMEM159. Note that RPS26P11 is a pseudo-gene,
which represents a segment of the gene RPS26.

Table 1 includes 11 different genes in total. Among the 11 genes, 9 genes have been verified in the
literature to be T1D associated genes. For example, Schadt and others (2008) reported that RPS26 is
a T1D causal gene, and Ma and Hart (2013) reported that the gene O-GlcNAc transferase (OGT) is
directly linked to many metabolic diseases including diabetes. Other than identifying some verified T1D
associated genes, we have also some new findings such as gene PRF1. Orilieri and others (2008) claimed
that PRF1 variations are susceptibility factors for T1D development. In Table 1, PRF1 appeared as a hub
gene twice, which suggests that the connection between PRF1 and T1D might be worth to be further
explored. Moreover, we also identifies some connection changes in the networks. As showed in Figure 4,
the new appearing and disappearing connections are marked in different colors at each time point, which
identify some evolvement patterns of the network.

For comparison, the GGL method was also applied to this example, for which the regularization
parameters were chosen according to the minimum AIC criterion. The total CPU time cost by the method
was 20.2 h. FGL was not applied to this example, as it would take extremely long CPU time. Figure S4
available at Biostatistics online shows the networks constructed by GGL for the case samples at all nine
time points. Table S6 available at Biostatistics online shows the top 5 hub genes identified by GGL at each
time point for the case samples. The lists of hub genes are pretty stable, which consists of seven different
genes only. Among the seven genes, only three genes RPS26, OGT, and JMJD1C have been verified in the
literature as T1D-associated genes. Moreover, as showed in Figure S4 available at Biostatistics online, the
hub genes in networks are almost identical at each time point. In summary, FHBIA tends to outperform
GGL for this real data example which can identify more hub genes which are associated with T1D.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 4. Gene networks produced by FHBIA for the case TEEDY samples at nine time points. The red edge lines
denote new connections appearing in the current network compared with the network at the previous time point; the
blue edge lines denote the disappearing connections in the network of the next time point; the green edge lines denote
the lines that are both newly appearing connections and disappearing connections; the gray edge lines denote the
unchanged connections in the current network and network at the previous time point. (a) Time 1, (b) time 2, (c) time
3, (d) time 4, (e) time 5, (f) time 6, (g) time 7, (h) time 8, and (i) time 9.

From the perspective of data analysis, one might also be interested in estimating the gene networks
constructed from the controls, as well as the differences between the networks from the cases and controls.
For comparing the networks from the cases and controls, we can adopt the method described in Section 6
of Liang and others (2015). However, since the method by Liang and others (2015) requires that the two
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Table 1. Top 5 hub genes identified by FHBIA for the case TEDDY samples at nine time points: “Links”
denotes the number of links of the gene to other genes, k is the index of time points, *indicates that there
exist other genes which has the same number of links with this genes, � indicates that this gene has
been verified as a T1D-related gene in the literature

Case group
Gene Links Gene Links Gene Links

�RPS26 104 �RPS26 68 �RPS26 64
�RPS26P11 40 �RPS26P11 15 �RPS26P11 12

k = 1 �ADAM10 4 k = 2 �ADAM10 5 k = 3 �ADAM10 5
� POGZ 3 � PRF1 4 U2SURP 4

�TMEM159* 3 � POGZ 3 �BCL11B* 3

�RPS26 99 �RPS26 91 �RPS26 86
�RPS26P11 14 �RPS26P11 18 �RPS26P11 42

k = 4 �ADAM10 6 k = 5 �ADAM10 4 k = 6 �BCL11B 3
�BCL11B 3 �BCL11B 3 GNPTG 3
�POGZ* 3 �POGZ* 3 �GGNBP2 3

�RPS26 78 �RPS26 70 �RPS26 61
�RPS26P11 46 �RPS26P11 39 �RPS26P11 30

k = 7 �BCL11B 3 k = 8 � PRF1 4 k = 9 �TMEM159 3
�TMEM159 3 �BCL11B 3 � GGNBP2 3
�GGNBP2 3 �GGNBP2 3 �OGT* 2

networks under comparison are independent, the sample information from the cases and controls should
not be integrated in this case. We left this work to the future.

5. DISCUSSION

We have proposed the FHBIA method for jointly estimating multiple GGMs under distinct conditions
and applied it to TEDDY data. The FHBIA method consists of a few important steps, which is to first
summarize the graph structure information contained in the data using the ψ-learning algorithm, then
integrate information via a meta-analysis procedure under the Bayesian framework, and finally determine
the structures of multiple graphs via a multiple hypothesis test. Compared to the existing methods, FHBIA
has a few significant advantages. First, FHBIA includes a meta-analysis procedure to explicitly integrate
information across distinct conditions. In contrast, the existing methods integrate information through
prior distributions or penalty function, which is often less efficient. Second, FHBIA can be run very
fast, especially when K is small. The overall computational complexity of FHBIA is O(p22K), where the
factor 2K is the total number of possible configurations of an edge across all K conditions. When K is
large, we need to resort to MCMC for an efficient estimation of the posterior probabilities π(el|ψ l)’s
for l = 1, 2, . . . , p(p − 1)/2. Since π(el|ψ l)’s can be estimated for each l ∈ {1, 2, . . . , p(p − 1)/2}
independently, this step can be done in parallel. In addition, we note that the correlation coefficients and
ψ-scores can also be calculated in parallel. Hence, the whole method can be executed very fast on a parallel
architecture. Moreover, instead of working on the original data, the Bayesian integration step chooses to
work on the edge-wise ψ-scores, which avoids to invert high-dimensional covariance matrices and thus
can be very fast. Note that, in calculation ofψ-scores, theψ-learning algorithm also successfully avoids to
invert high-dimensional covariance matrices through correlation screening. Third, the empirical Bayesian
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method that FHBIA employed for multiple hypothesis tests produces a q-value (Storey, 2002) for each
potential edge of the multiple graphs. The q-value provides an uncertainty measure for each potential
edge. This has been beyond the ability of many of the existing methods, especially when p is large.

The FHBIA method has a very flexible framework, which can be easily extended to joint estimation of
multiple mixed graphical models. For example, consider the scenario that the data consist of only Gaussian
and multinomial random variables, for which the joint distribution is well defined (Lee and Hastie, 2015).
For such mixed data, the ψ-learning algorithm can be performed under the framework of generalized
linear models; that is, we can replace the correlation coefficients and ψ-partial correlation coefficients
used in the algorithm by the corresponding p-values obtained in the marginal variable screening tests (Fan
and Song, 2010) and conditional independence tests. Then, we can replace the ψ-scores by the Z-scores
corresponding to the p-values of the conditional independence tests. For other types of continuous random
variables, we can apply the nonparanormal transformation (Liu and others, 2009) to Gaussianize them
prior to the application of the FHBIA method. For certain types of discrete data, e.g., next generation
sequencing data, we can apply the transformations developed in (Jia and others, 2017) to continuize and
Gaussianize them prior to the application of the FHBIA method.

Finally, we would like to mention that the sparsity assumption imposed on the networks does not limit
the applications of the FHBIA method. Sparsity is a just trick adopted by people for making statistical
inference where there is no enough amount of data available, e.g., in dealing with small-n-large-p problems.
In this article, the sparsity assumption A4 (in the supplementary material available at Biostatistics online)
is given in the form of the sample size n, which leads to a bounded neighborhood size of O(n/ log(n)) for
each node, see Lemma 3.2 and theψ-learning algorithm presented in the supplementary material available
at Biostatistics online. Therefore, when the sample size n is large enough, e.g., when using the UK biobank
data which consists of over 500 K samples to construct GRNs, FHBIA can be applied to learn dense genetic
networks (Boyle and others, 2017). For UK biobank data, we have 500 000/ log(500 000) ≈ 38 103, which
is much larger than the number of genes (≈20 K) we usually considered and thus neighborhood truncation
in the correlation screening step ofψ-learning will not be triggered. When the data size is not large enough,
the FHBIA will identify only the strongest connections in terms of partial correlation coefficients. This
property is inherited from the ψ-learning algorithm.

6. SOFTWARE

The software accompanied with this article is available as a module called JGGM in the R package equSA
at https://cran.r-project.org/web/packages/equSA/index.html.

SUPPLEMENTARY MATERIAL

Supplementary material is available at http://biostatistics.oxfordjournals.org.
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