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Abstract
Aims/hypothesis We aimed to investigate the association between maternal consumption of gluten-containing foods and other
selected foods during late pregnancy and offspring risk of islet autoimmunity (IA) and type 1 diabetes in The Environmental
Determinants of Diabetes in the Young (TEDDY) study.
Methods The TEDDY study recruited children at high genetic risk for type 1 diabetes at birth, and prospectively follows them for the
development of IA and type 1 diabetes (n = 8556). A questionnaire on the mother’s diet in late pregnancy was completed by 3–
4 months postpartum. The maternal daily intake was estimated from a food frequency questionnaire for eight food groups: gluten-
containing foods, non-gluten cereals, fresh milk, sour milk, cheese products, soy products, lean/medium-fat fish and fatty fish. For each
food, we described the distribution of maternal intake among the four participating countries in the TEDDY study and tested the
association of tertile of maternal food consumption with risk of IA and type 1 diabetes using forward selection time-to-event Cox
regression.
Results By 28 February 2019, 791 cases of IA and 328 cases of type 1 diabetes developed in TEDDY. There was no association
between maternal late-pregnancy consumption of gluten-containing foods or any of the other selected foods and risk of IA, type 1
diabetes, insulin autoantibody-first IA or GAD autoantibody-first IA (all p ≥ 0.01).Maternal gluten-containing food consumption in late
pregnancy was higher in Sweden (242 g/day), Germany (247 g/day) and Finland (221 g/day) than in the USA (199 g/day) (pairwise
p< 0.05).
Conclusions/interpretation Maternal food consumption during late pregnancy was not associated with offspring risk for IA or
type 1 diabetes.
Trial registration ClinicalTrials.gov NCT00279318.
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Abbreviations
FFQ Food frequency questionnaire
IA Islet autoimmunity
IA-2A Insulinoma antigen-2 autoantibody
IAA Insulin autoantibody
GADA GAD autoantibody
TEDDY The Environmental Determinants of Diabetes in

the Young

Introduction

Type 1 diabetes arises as a result of both genetic predisposi-
tion and exposure to non-genetic factors. The asymptomatic
prediabetic period, called islet autoimmunity (IA), is
characterised by the appearance of islet autoantibodies, which
are highly predictive of type 1 diabetes [1, 2]. Dietary factors
may contribute to the development of IA or type 1 diabetes.
Most investigations of dietary factors have focused on the
timing of introduction of certain foods in infancy [3–7] and
the frequency or amount of food consumption during child-
hood [8–11].

Relatively fewer studies have explored the relationship
between maternal diet during pregnancy and the development
of IA or type 1 diabetes in offspring [12–16], despite the well-
documented impact of maternal nutrition on fetal develop-
ment and childhood health outcomes [17–19]. The studies
exploring this topic have identified protective effects from
vegetable consumption [15], potato consumption [13], dietary
sources of vitamin D [12] and consumption of butter, low-fat
margarines, berries and coffee [14]. Maternal consumption of
cereals, fish/dietary n-3 fatty acids and cow’s milk reportedly
had no effect on the autoantibody status of the offspring
[12–15, 20].

Gluten intake appears important in the development of
autoimmune diseases, including celiac disease [21–23] and,
at times, type 1 diabetes [24, 25]. However, recent large
population-based studies report conflicting results—
increased gluten intake during pregnancy was associated with
increased risk of type 1 diabetes in Denmark [26], but not in
Norway [27]. Neither study examined the role of maternal
gluten intake in the appearance of islet autoantibodies.

The Environmental Determinants of Diabetes in the Young
(TEDDY) is an international multicentre observational study
prospectively following children from birth until the age of
15 years and seeking environmental factors involved in both
type 1 diabetes [28] and celiac disease [29]. Environmental
triggers during late pregnancy and infancy, including duration
of breast feeding and timing of complementary food introduc-
tion, are closely monitored. Furthermore, prospective and
frequent testing for islet autoantibodies gives the TEDDY
study a unique opportunity to contribute to this small, but
growing, pool of data. The aims of this manuscript are to
describe late-pregnancy food consumption in TEDDY, and
to explore the possible relationship between maternal
consumption of gluten-containing foods and other selected
foods and the development of IA or type 1 diabetes in
offspring with increased genetic risk.

Methods

Study population The TEDDY study is approved by local
Ethical Institutional Review Boards and is monitored by an
External Advisory Board formed by the National Institutes of
Health. It involves six clinical research centres located in
Colorado, Georgia/Florida and Washington State in the USA
and in Finland, Germany and Sweden that all follow the same
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study protocol, which includes scheduled visits every third
month until the age of 4 years and every sixth month thereafter
[30]. Between September 2004 and February 2010, 424,788
newborn infants were screened and 21,589 infants fulfilled the
inclusion criteria based on HLA genotyping. Altogether, 8676
children were enrolled in the follow-up study. Written
informed consent was obtained for all study participants from
a parent or primary caretaker, separately, for genetic screening
and participation in the prospective follow-up, beginning at
birth. Of these, 120 children were HLA ineligible and were
thus excluded from the final sample, leaving a total of 8556
children for this study (Fig. 1).

Screening for IA and type 1 diabetes Blood samples to test
autoantibody status were drawn quarterly starting at 3 months
of age during the first 4 years and biannually thereafter. Three
autoantibodies against GAD (GADA), insulin (IAA) and
insulinoma antigen-2 (IA-2A) were tested. Methods for test-
ing samples for autoantibody positivity are described more
thoroughly elsewhere [31]. An individual was considered
autoantibody positive when a blood sample was confirmed
positive at the two laboratories used in TEDDY (Barbara
Davis Center for Childhood Diabetes, University of
Colorado, USA and Bristol Laboratory, University of
Bristol, UK). Persistent IA was defined as confirmed positive
autoantibodies to IAA, GADA or IA-2A in at least two
consecutive samples, collected at least 3 months apart.
Previously published studies in TEDDY found a relationship
between the order of autoantibody appearance and risk of type

1 diabetes [32–35]. We therefore examined secondary
outcomes of IAA only or GADA only as the first appearing
autoantibody (IAA-first IA and GADA-first IA, respectively).
Type 1 diabetes was diagnosed by a physician according to
the American Diabetes Association’s criteria. Data as of 28
February 2019 were used for all analyses.

Other characteristics The infant screening form was complet-
ed by a family member at birth, and provided information
about basic demographic and maternal characteristics, includ-
ing family history of diabetes. This information was verified
within the infant’s first year of life in another questionnaire.
Mothers reported prenatal details such as consumption of
selected foods, medications, smoking habits and education
level attained, in addition to dietary supplement use, through
self-administered questionnaire at 3.0–4.5 months postpar-
tum. Trained interviewers reviewed questionnaires for
completeness and detail at the first visit.

Information about basic demographic maternal characteris-
tics was received from the infant screening form. A question-
naire was mailed home to the mother prior to the first clinic
visit (3.0–4.5 months postpartum). This questionnaire
contained questions regarding illnesses, use of medications
or dietary supplements, smoking and alcohol consumption,
and maternal diet during the last month of pregnancy (for
the USA and Sweden) or the eighth month of pregnancy (for
Finland and Germany). Information about maternal education
was obtained at the 9 month clinic visit. Parents reported
education level on a ten-category scale that was subsequently
aggregated into three categories in order for the variable to be
comparable across countries: basic primary education (high
school qualification or less), vocational school or some
university, and university degree or higher. Alcohol consump-
tionwas recorded as ‘yes’ if any alcohol was consumed during
any trimester in pregnancy.

Maternal food consumption Information on maternal dietary
intake during the eighth or ninth month of pregnancy (depend-
ing on country) was collected using a food frequency ques-
tionnaire (FFQ) specifically designed to capture consumption
of cereals/grains, milk andmilk products, soy and fish/seafood
[34]. The mother reported how often she ate foods such as
cereals, bread, porridge, pastas, pizza, bakery products, cow’s
milk and cream, sour milk and other cultured cow’s milks
including yoghurts, cheeses, soy and soy products, and vari-
ous fishes and seafood. Altogether, 36 food items or food
groups were included in the FFQ. Fish were categorised
according to the fat content: lean, medium or fatty. One
portion of each type of food was described in the question-
naire to help the mother to estimate the consumption frequen-
cy per portion; examples of portion sizes are: one slice of
bread, one bowl of oatmeal, one glass of milk, two slices of
cheese, one serving of salmon and one serving of shrimps.

Newborns screened

n=424,788

Assessed for HLA 

eligibility

n=21,589

Enrolled in 15 year follow-

up study

n=8676

Excluded:

Non-HLA eligible, n=120

Maternal late-pregnancy 

consumption analysis

n=8556

Fig. 1 Study population
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Consumption frequencies of non-gluten cereals, i.e. those
containing oats, rice and corn, were asked for separately from
the consumption frequencies of foods containing wheat,
barley and/or rye. All food consumption frequencies were
converted into daily consumption frequencies (servings/day).
Therefore, daily consumption frequencies were used as such
but weekly frequencies were divided by 7 and monthly by 30.
Differences in customary serving sizes (in grams) by country
were taken into consideration. The amount (g/day) of food
consumed was estimated from mean daily consumption
frequencies and summed up in nine food categories: gluten-
containing foods, non-gluten cereals, fresh milks (and cream),
sour milks (including all cultured milks), cheese products, soy
products, lean fish/seafood, medium-fat fish and fatty fish.
Lean and medium-fat fish exposures were pooled in the anal-
yses because reported medium-fat fish consumption was low.
Soy products were infrequently reported—80% of mothers
reported zero soy consumption.

Statistical analysis For each food group, we described mater-
nal intake for all countries and separately by country. Overall
differences between intakes across countries were tested using
the Kruskal–Wallis test. For any food group showing signifi-
cantly different overall distributions, we tested pairwise differ-
ences between countries using the Wilcoxon signed rank test.

Four endpoints were analysed: time to IA (any), time to
IAA-first IA, time to GADA-first IA and time to type 1 diabe-
tes. Each endpoint was analysed separately. The stratified Cox
proportional hazards model was used for each analysis with
country as the stratification. For the time to first antibody (IA,
IAA-first IA, GADA-first IA), HLA-DR-DQ genotype, family
history of type 1 diabetes, sex and probiotics before 28 days of
age (yes/no) were covariates in the analysis. For time to type 1
diabetes, HLA-DR-DQ genotype, family history of type 1
diabetes and sex were covariates in the analysis. Potential
confounders, such as maternal age, maternal education, BMI
and smoking during pregnancy (yes/no), were examined in a
forward stepwise algorithm with a cut-off of 0.01 in the Cox
proportional hazards models for all endpoints.

Our primary focus was the relationship between gluten-
containing food consumption during late pregnancy and each
of the four outcomes, given that gluten intake during pregnancy
has been implicated as a risk factor for type 1 diabetes in the
offspring [26]. Daily gluten-containing food consumption was
categorised into tertiles and scaled as 1, 2, 3 in the analysis to
increase the power to detect a monotonic relationship with expo-
sure. A two-tailed significance level of 0.05 for gluten-containing
food exposure was considered statistically significant.

Other maternal food consumption variables were analysed
similarly to the gluten-containing food analysis, except for soy
products which was dichotomised (0, >0). For these second-
ary analyses, a two-tailed 0.01 level was considered statisti-
cally significant to account for the multiple comparisons.

Results

Of 8556 TEDDY participants, 791 cases of IA and 328 cases
of type 1 diabetes developed by 28 February 2019. Maternal
and participant characteristics of the study population (n =
8556) are shown in Table 1. Approximately 11% (n = 951)

Table 1 Maternal and participant characteristics for children participat-
ing in the TEDDY study

Characteristic All participants

Child characteristic

Birth year

2004–2005 1415 (17)

2006 1516 (18)

2007 1828 (21)

2008 1726 (20)

2009–2010 2071 (24)

Sex (male) 4330 (51)

FDR with type 1 diabetes 951 (11)

HLA genotype

HLA-DR3/4 3339 (39)

HLA-DR4/4 1674 (20)

HLA-DR4/8 1474 (17)

HLA-DR3/3 1791 (21)

Others 278 (3)

Country

USA 3661 (43)

Finland 1808 (21)

Germany 582 (7)

Sweden 2505 (29)

Consuming probiotics before 4 weeks

Yes 821 (10)

No 7735 (90)

Maternal characteristic

Age at delivery, median years (IQR) 30 (27, 34)

Education

High school qualification or less 1575 (18)

Vocational school or some university 1999 (23)

University degree or more 4118 (48)

Missing 864 (10)

Smoking during pregnancy

No 7246 (85)

Yes 1150 (13)

Missing 160 (2)

Alcohol during pregnancy

No 5546 (65)

Yes 2851 (33)

Missing 159 (2)

Data are shown as n (%) unless otherwise indicated

FDR, first-degree relative
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have a first-degree relative with type 1 diabetes and 39% (n =
3339) have the highest risk HLA-DR3/4 genotype. Maternal
age at delivery ranged from27 to 34 years (median = 30 years).
Among mothers of TEDDY participants, 48% (n = 4118)
have a college degree, 13% (n = 1150) smoked during preg-
nancy and 33% (n = 2851) drank alcohol during pregnancy.
Participant characteristics are provided by study endpoints in
the Electronic supplementary material (ESM) Table 1.

Table 2 shows the mean, count and tertile cut-points for
each of the food groups overall and by participating country.
Maternal intake of all food groups differed by country
(Kruskal–Wallis p < 0.001), as did most pairwise comparisons

between countries (Table 2, Wilcoxon signed rank p < 0.05).
Consistent with a previous examination of gluten-containing
cereal servings per day [36], mean maternal gluten-containing
food consumption in late pregnancy was higher in Sweden
(242 g/day), Germany (247 g/day) and Finland (221 g/day)
than in the USA (199 g/day). Mothers in Finland reported the
highest consumption of fresh milk (482 g/day), sour milk
(223 g/day), cheese products (75 g/day) and fatty fish (24 g/
day), compared with other TEDDY countries.

We found no evidence of an association between tertile of
maternal gluten-containing food consumption and risk of IA
(high vs low, HR 1.00; 95% CI 0.83, 1.20), type 1 diabetes

Table 2 Maternal food consumption in late pregnancy for children participating in the TEDDY study (n = 8556)

Maternal food consumption
(tertile cut-points)

TEDDY—all countries USA Finland Germany Sweden Significant*
country
differencesn Mean

(SD)
n Mean

(SD)
n Mean

(SD)
n Mean

(SD)
n Mean

(SD)

Gluten foods (168, 247 g/day) 8399 220 (116) 3574 199 (130) 1767 221 (87) 580 247 (114) 2478 242 (104) USA–Fin
Fin–Ger
USA–Ger
Fin–Swe
USA–Swe

Non-gluten cereals (30, 64 g/day) 8399 61 (72) 3574 68 (86) 1767 60 (58) 580 44 (52) 2478 56 (59) USA–Ger
Fin–Ger
USA–Swe
Fin–Swe
Ger–Swe

Fresh milk (227, 515 g/day) 8397 415 (335) 3574 436 (333) 1767 482 (344) 579 309 (271) 2477 361 (331) USA–Fin
Fin–Ger
USA–Ger
Fin–Swe
USA–Swe
Ger–Swe

Sour milk (53, 170 g/day) 8395 135 (146) 3573 92 (115) 1766 223 (176) 579 170 (154) 2477 125 (132) USA–Fin
Fin–Ger
USA–Ger
Fin–Swe
USA–Swe
Ger–Swe

Cheese products (30, 60 g/day) 8393 53 (50) 3571 55 (53) 1766 75 (58) 579 34 (26) 2477 38 (37) USA–Fin
Fin–Ger
USA–Ger
Fin–Swe
USA–Swe

Lean or medium-fat fish
(4, 14 g/day)

8395 14 (25) 3573 14 (34) 1766 12 (17) 578 17 (20) 2478 14 (15) USA–Fin
Fin–Ger
USA–Ger
Fin–Swe
USA–Swe
Ger–Swe

Fatty fish (5, 18 g/day) 8397 17 (27) 3573 15 (32) 1767 24 (25) 579 17 (23) 2478 15 (17) USA–Fin
Fin–Ger
USA–Ger
Fin–Swe
USA–Swe

*p < 0.05 for Wilcoxon signed rank test

Fin, Finland; Ger, Germany; Swe, Sweden
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(high vs low, HR 0.88; 95% CI 0.67, 1.17), IAA-first IA (high
vs low, HR 0.95; 95% CI 0.71, 1.26) or GADA-first IA (high
vs low, HR 1.08; 95% CI 0.82, 1.43). Complete model results
are provided in ESM Table 2. Other than first-degree relative
status, no other maternal factors were significantly associated
with any outcome and were therefore excluded from the
model. Results did not change when we treated the gluten
food measure analytically similar to previous studies [26,
27], using a continuous measure and comparing the lowest
with highest groups of maternal intake (10th compared with
90th percentile). Kaplan–Meier survival curves for each
endpoint are shown in Fig. 2. From forward selection Cox
regression, there were also no significant (p < 0.01) associa-
tions detected between any maternal food group consumption
and any of the four offspring endpoints: IA, IAA-first IA,
GADA-first IA and type 1 diabetes. Interactions for each of
the eight food groups with HLA and with country (country
was included as a covariate as opposed to a stratification vari-
able for this analysis) were also examined for each of the four
endpoints. There were no significant (p < 0.01) interactions
for any of the food groups for any endpoint.

Additional sensitivity analyses were conducted by includ-
ing SNP covariates and other covariates which have previous-
ly been associated with either autoimmunity or type 1 diabetes
in the models. For IAA as the first antibody, GAD as the first

antibody and any persistent confirmed antibody endpoints, the
additional covariates were extensively hydrolysed cow’s
milk-based formula prior to 7 days of age (yes/no), weight z-
score at 12 months and SNPs rs2476601 in PTPN22,
rs2816316 in RGS1, rs2292239 in ERBB3, rs3184504 in
SH2B3, rs4948088 in COBL, rs1004446 in INS, rs1270876
in CLEC16A, rs10517086, rs1143678 in ITGAM and
rs4597342 in ITGAM [37–39]. For the type 1 diabetes
endpoint, the additional covariates were SNPs rs2476601 in
PTPN22, rs2292239 in ERBB3, rs3184504 in SH2B3,
rs1004446 in INS, rs7111341 in INS, rs11711054 in CCR5
and rs3825932 in INT [38]. These sensitivity analyses did not
find any significant (p < 0.01) association with any of the food
groups for any endpoint.

Discussion

Maternal late-pregnancy consumption of gluten-containing
foods, non-gluten cereals, fresh milk, sour milk, cheese prod-
ucts, lean/medium-fat fish, fatty fish and soy products was not
associated with risk of IA, type 1 diabetes, IAA-first IA or
GADA-first IA in children with high genetic risk. These find-
ings were robust to sensitivity analyses examining differences
(interactions) by HLA genotype and country of origin, despite

Fig. 2 Kaplan–Meier survival curves from any IA (a), type 1 diabetes (T1D) (b), IAA-first IA (c) and GADA-first IA (d) by tertile (cut-points: 168,
247 g/day) of maternal gluten-containing food consumption in late pregnancy; tertile 1, blue; tertile 2, red; tertile 3, green
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differences in the amount of maternal late-pregnancy food
consumption among Finland, Germany, Sweden and the
USA. Additional adjustment for characteristics previously
associated with IA or type 1 diabetes in this study did not alter
these findings.

The lack of association between maternal gluten-
containing food consumption and offspring risk of IA
confirms smaller, country-specific studies of maternal cereal
consumption among high-risk children in the USA [13] and
Finland [14]. Our study extends these findings by establishing
no relationship between maternal gluten-containing food
consumption and offspring risk of type 1 diabetes among
high-risk children. While outside the scope of this study, we
cannot exclude the possibility that maternal gluten consump-
tion may act in concert with offspring gluten exposures, such
as the timing of gluten introduction during infancy or child-
hood gluten intake, that have been previously associated with
risk of IA or type 1 diabetes [3, 24, 25].

Our study supports similarly null findings between mater-
nal gluten intake and type 1 diabetes reported from the
population-based study in Norway [27]. The modest magni-
tude of association reported in Denmark showed only margin-
al significance, and, with fewer cases represented than for
either Norway or the present study, may be a chance finding.
However, notable differences between these studies and ours
should be considered. Findings may not be directly compara-
ble as we report the amount (g/day) of gluten-containing foods
assessed by our selective FFQ rather than estimating total
gluten amount in the maternal diet as reported by these two
prior studies. Furthermore, results from our genetically high-
risk population may not be generalisable to the general popu-
lation.We also cannot exclude the possibility that our findings
might be different if we had assessed second-trimester rather
than third-trimester gluten consumption, similar to the two
population-based studies. Maternal FFQs were completed
slightly later than for the prior studies (at 3 months postpartum
compared with during the second trimester of pregnancy).
This methodological difference is unlikely to explain differ-
ences in study findings, however, as maternal pregnancy diet
recall has been shown to have comparable accuracy as recent
diet recall, up to 6 [40] or 7 [41] years postpartum.

Previous investigations of broader maternal food consump-
tion during pregnancy in high-risk prospective studies have
focused on the IA outcome, and found no association for
cereals, fish or cow’s milk [12–15, 20]. Our study supports
these previous findings, showing no relationship between
cereals (gluten-containing or non-gluten), fish (lean/medium
or fatty) or milk (fresh, sour or cheese products) and risk of IA.
Our study extends these findings to demonstrate no relation-
ship between maternal food group consumption during late
pregnancy and additional outcomes, including: IAA-first IA,
GADA-first IA and type 1 diabetes. The protective factors
previously identified (vegetable consumption [15], potato

consumption [13], dietary sources of vitamin D [12] and
consumption of butter, low-fat margarines, berries and coffee
[14]) were not included in the maternal FFQ, and therefore
could not be studied.

Our study has many strengths. As the largest prospective
study of high-risk children, this study is well powered to iden-
tify risk factors for type 1 diabetes [42, 43]. Maternal FFQs
were collected prior to the development of offspring
outcomes; therefore, maternal food consumption reporting is
not subject to recall bias. The intense, frequent follow-up of
study participants enables precise and harmonised ascertain-
ment of type 1 diabetes outcomes [31], including the preclin-
ical IA outcomes that cannot be examined in registry-based
linkage studies such as those from Norway and Denmark [26,
27]. Study participants represent the population most likely to
develop type 1 diabetes—children of European ancestry
carrying higher risk HLA genotypes. Our results are therefore
generalisable to similarly high-risk populations. Shared proto-
cols in this multi-national study allowed us to demonstrate no
difference in findings across countries. All analyses or sensi-
tivity analyses included the full set of previously identified
risk factors and potential confounders, giving us the ability
to demonstrate no independent effect of maternal consump-
tion of gluten-containing foods or other foods in the disease
process. We appropriately accounted for the multiple testing
burden a priori by establishing a forward selection signifi-
cance threshold at an α of 0.01 for foods to be included in
regression modelling.

For children at high genetic risk, maternal food consump-
tion in late pregnancy is not associated with risk of IA or type
1 diabetes. Our results do not support the avoidance of gluten-
containing or other foods during late pregnancy to modify the
risk of type 1 diabetes disease in offspring.

Supplementary Information The online version contains peer-reviewed
but unedited supplementary material available at https://doi.org/10.1007/
s00125-021-05446-y.
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ESM Table 1: Maternal food consumption in late pregnancy by offspring endpoint in the 

TEDDY study (N=8556) 

 IA Non-IA T1D Non-T1D 

Maternal Food 

Consumption 

(tertile cutpoints) 

n 
Mean 

(SD) 
n 

Mean 

(SD) 
n 

Mean 

(SD) 
n 

Mean 

(SD) 

Gluten Foods 

(168, 247 g/day) 
782 

221 

(108) 
7617 

220 

(116) 
328 

215 

(94) 
8071 

220 

(116) 

Non-Gluten Cereals 

(30, 64 g/day) 
782 

57 

(57) 
7617 

61 

(73) 
328 

55 

(49) 
8071 

61 

(71) 

Fresh Milk  

(227, 515 g/day) 
782 

403 

(300) 
7615 

416 

(339) 
328 

415 

(330) 
8069 

415 

(335) 

Sour Milk  

(53, 170 g/day) 
782 

148 

(152) 
7613 

133 

(146) 
328 

144 

(152) 
8067 

135 

(146) 

Cheese Products  

(30, 60 g/day) 
781 

53 

(47) 
7612 

53 

(51) 
327 

50 

(43) 
8066 

53 

(51) 

Lean or Medium fat 

Fish (4, 14 g/day) 
781 

13 

(24) 
7614 

14 

(25) 
328 

14 

(31) 
8067 

14 

(25) 

Fatty Fish  

(5, 18 g/day) 
781 

16 

(22) 
7616 

17 

(27) 
328 

15 

(19) 
8069 

17 

(27) 

 



ESM Table 2: Hazard ratios from stratified Cox proportional hazards model (strata=country) for gluten-containing foods. 

 
 

Any Persistent Antibody (IA) IAA-first IA GADA-first IA T1D 

 
HR (95% CI) p-value HR (95% CI) p-value HR (95% CI) p-value HR (95% CI) p-value 

HLA (Ref=HLA-DR3/4)  <0.001  <0.001  <0.001  <0.001 

HLA-DR4/4 0.73 (0.60, 0.88)  0.77 (0.56, 1.06)  0.57 (0.42, 0.78)  0.66 (0.49, 0.88)  

HLA-DR4/8 0.73 (0.59, 0.89)  0.96 (0.71, 1.31)  0.58 (0.41, 0.82)  0.57 (0.41, 0.80)  

HLA-DR3/3 0.52 (0.42, 0.64)  0.36 (0.24, 0.55)  0.78 (0.59, 1.02)  0.29 (0.19, 0.43)  

All Others 0.39 (0.26, 0.59)  0.50 (0.27, 0.93)  0.13 (0.05, 0.37)  0.37 (0.22, 0.64)  

Gender (Ref=Female) 1.19 (1.03, 1.37) 0.017 1.30 (1.03, 1.64) 0.027 1.07 (0.87, 1.33) 0.526 1.06 (0.86, 1.32) 0.585 

First Degree Relative (Ref=No) 2.33 (1.91, 2.83) <0.001 2.54 (1.84, 3.50) <0.001 2.36 (1.76, 3.17) <0.001 3.40 (2.59, 4.48) <0.001 

Probiotics Before 4 weeks 

(Ref=No) 
0.81 (0.62, 1.04) 0.093 0.75 (0.51, 1.12) 0.165 0.81 (0.54, 1.22) 0.311 .1 .1 

Gluten-Containing Foods Tertile 

(Ref=Low) 
 0.990  0.512  0.351  .667 

Medium 0.99 (0.83, 1.18)  0.85 (0.63, 1.13)  1.21 (0.93, 1.59)  0.96 (0.73, 1.25)  

High 1.00 (0.83, 1.20)  0.95 (0.71, 1.26)  1.08 (0.82, 1.43)  0.88 (0.67, 1.17)  

1Probiotics Before 4 weeks not included as covariate for T1D 
HR = hazard ratio 
CI = confidence interval 
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