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Abstract

Background: A nested case‐control (NCC) design within a prospective cohort study

can realize substantial benefits for biomarker studies. In this context, it is natural to

consider the sample availability in the selection of controls to minimize data loss

when implementing the design. However, this violates the randomness required for

selection, and it leads to biased analyses. An inverse probability weighting may

improve the analysis, but the current approach using weighted Cox regression fails

to maintain the benefits of NCC design.

Methods: This paper introduces weighted conditional logistic regression. We illus-

trate our proposed analysis using data recently investigated in The Environmental

Determinants of Diabetes in the Young (TEDDY). Considering the potential data loss,

the TEDDY NCC design was moderately selective in its selection of controls. A data‐

driven simulation study was performed to present the bias correction when a nonran-

dom control selection was ignored in the analysis.

Results: The TEDDY data analysis showed that the standard analysis using condi-

tional logistic regression estimated the parameter: −0.015 (−0.023, −0.007). The

biased estimate using Cox regression was −0.011 (95% confidence interval: −0.019,

−0.003). Weighted Cox regression estimated −0.013 (−0.026, 0.0004). The proposed

weighted conditional logistic regression estimated −0.020 (−0.033, −0.007), showing

a stronger negative effect size than the one using conditional logistic regression. The

simulation study also showed that the standard estimate of β ignoring the nonrandom

control selection tends to be greater than the true β (ie, positive relative biases).

Conclusion: Weighted conditional logistic regression can enhance the analysis by

offering flexibility in the selection of controls, while maintaining the matching.
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1 | INTRODUCTION

7Prospective cohort studies are utilized to assess how incident events

are influenced by the characteristics of interest in participants
wileyonlinelibrary.com/
followed over time. However, the collection of prospective data can

require substantial resources, especially when the incidence of events

is low. When resources are limited, it may not be feasible to gather the

data from the full cohort over the entire follow‐up. A nested case‐
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control (NCC) design is the primary choice in a prospective cohort

study to avoid such situations without compromising many of the ben-

efits from the full cohort analysis.1,2 In modern epidemiological stud-

ies, as it becomes relatively easier to manage multicentre or

international prospective cohort studies, the use of an NCC design

has increased, especially when expensive biomarker analyses such as

high‐throughput genomics are pursued.3-5

An NCC design includes all event cases up to a specific follow‐up

time, but selects only a predetermined number of controls for each

case from the event‐free subjects at the time when a case developed

the event.6 Assuming that the selection of controls for each case was

at random, conditional logistic regression is the standard statistical

analysis. However, when the design is used for biomarker analyses,

the selection of controls often depends on the availability of

biospecimen samples since no data can be expected without the cor-

responding sample. This helps improve efficiency by reducing missing

data, but it can introduce bias that may not be accounted for in the

analysis using standard analytic tools.

In this paper, we propose an alternative selection bias corrected

analysis in an NCC design. By adopting the approach by Lin and Paik7

for a matched case‐control data analysis, our approach maintains the

matching and suggests how to obtain the control selection probability

from the full cohort. This approach is illustrated in the application of

the plasma 25‐hydroxyvitamin D [25(OH)D] concentration analysis

presented recently in an NCC study fromThe Environmental Determi-

nants of Diabetes in the Young (TEDDY).8 A TEDDY data‐driven sim-

ulation study was conducted to assess the effect of bias correction.

The performance of the simulation was described in relation to the

effect size and the selection parameter of the factor of interest.
2 | BACKGROUND

2.1 | Nested case‐control design

In a prospective cohort study, we observe time of event or censoring

for each participant in follow‐up, whichever comes first. When time of

event is observed, a “risk‐set” is constructed, which includes all
FIGURE 1 Hypothetical example to show a prospective cohort
study with five participants followed
participants in follow‐up at the event time. Figure 1 illustrates a hypo-

thetical prospective cohort study with five participants followed; of

those, participants 1, 3, and 4 developed the event at times 1, 2, and

3. Hence, three risk‐sets are constructed corresponding to each event:

risk‐set 1 by participant 1 including all five participants, risk‐set 2 by

participant 3 including participants 3, 4, and 5, and risk‐set 3 by partic-

ipant 4 including participants 4 and 5.

An NCC design includes all cases in follow‐up but selects controls

for a case from those event‐free participants in the case's risk‐set in a

prospective cohort study. In Figure 1, participants 1, 3, and 4 are

included as cases, and controls for each case are selected from the

case's risk‐set. For example, participants 2 to 5 are potential controls

for participant 1 (case 1) in risk‐set 1, but participant 5 is the only

potential control for participant 4 (case 3) in risk‐set 3. In this design,

controls are expected to be randomly selected without replacement

in a risk‐set (ie, for better efficiency) but with replacement across

risk‐sets as long as the next risk‐sets include them (ie, for the indepen-

dence between risk‐sets). Hence, a participant can appear more than

once in different case‐control sets since the participant can appear

in different risk‐sets by his/her observed time. However, case‐control

sets are independent of each other, assuming that risk‐sets are inde-

pendent of each other in the full cohort analysis. This implies that

the information given for one case‐control set is independent of the

information given for another case‐control set.

Since controls are selected from the same risk‐set as the case, an

NCC design is considered a matched case‐control design with the risk‐

set as amatching factor. Therefore, this design can alsomatch on poten-

tial confounders at a subject level. Also, with or without intention, this

risk‐set matching leads to matching on longitudinal data collected

between a case and its matched controls (ie, a sample‐level matching).

As shown in Figure 2, through the risk‐set matching, the longitudinal

data in each matched case‐control set are determined, depending on

the case's event time. In the first set, only 3 observations per participant

can be compared between the case and its matched controls, while 15

observations can be compared in the third set. If thematching is broken,
FIGURE 2 Hypothetical example to show possible variability in the
number of longitudinal data between matched sets in a nested case‐
control design
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this sample‐level matching will introduce unforeseen bias in the analy-

sis, in addition to that from the subject‐level matching.

2.2 | Nested case‐control data analysis

2.2.1 | Conditional logistic regression

In a matched case‐control data analysis, conditional logistic regres-

sion is primarily used to examine the association between the event

and characteristics measured by the time of event. The conditional

odds can be written as below:

P Y ¼ 1∣X; Z; S ¼ 1ð Þ
P Y ¼ 0∣X; Z; S ¼ 1ð Þ ¼

P S ¼ 1∣Y ¼ 1; X; Zð Þ
P S ¼ 1∣Y ¼ 0; X; Zð Þ

P Y ¼ 1∣X; Zð Þ
P Y ¼ 0∣X; Zð Þ (1)

whereY is the indicator of being the case, X is the vector of characteris-

tics of interest, Z is the vector of matching factors, and S is the indicator

of being included in the matched case‐control design. The assumption

that the selection is at random implies that the selection does not

depend on X, which is the characteristics of interest {ie, P(S = 1| Y,X,

Z) = P(S = 1| Y,Z)}. Therefore, Equation (1) can be written as

logitP Y ¼ 1jS ¼ 1; X; Zð Þ ¼ logitP Y ¼ 1jX; Zð Þ þ f Zð Þ (2)

where f Zð Þ ¼ log
P S ¼ 1∣Y ¼ 1; X; Zð Þ
P S ¼ 1∣Y ¼ 0; X; Zð Þ

� �
¼

log
P Y ¼ 1∣S ¼ 1; Zð Þ
P Y ¼ 0∣S ¼ 1; Zð Þ

P Y ¼ 0jZð Þ
P Y ¼ 1jZð Þ

� �
¼ log

P Y ¼ 0jZð Þ
P Y ¼ 1jZð Þ

� �
− log mð Þ,

for 1 to m (the number of controls) matched case‐control design. Then,

the function f (Z) is canceled out, and the conditional likelihood for stan-

dard conditional logistic regression becomes

L βð Þ ¼ ∏n
i¼1

exp Xi0 tð Þβf g
∑j∈Rsi exp Xij tð Þβ

� � (3)

where n is the number of cases, and the setRsi includes the case 0 andm

controls matched to the case in the ith matched case‐control set,

j = 0,1,2,. .m. For an NCC design, Xij(t) can be defined as the jth subject's

characteristics of interest by the event time t of the case in the ith set,

since the design is matched by the case's risk‐set. Although the likeli-

hood (3) is the same as the partial likelihood for full cohort analysis,

the risk in Rsi is fixed by the design, as opposed to the one constructed

by chance in the full cohort analysis. The regression parameter β corre-

sponds to the log of the odds ratio for a unit change of Xij(t), as the like-

lihood is formed by modeling the odds.

2.2.2 | Weighted Cox regression

If the matching is broken in an NCC design, the participants included

in the design may be considered as a subcohort selected from the

full cohort. Then, weighted Cox regression can be a choice for selec-

tive cohort analysis with the weight being the inverse selection

probability for each participant.9-11 The weighted partial likelihood

can be written as

L βð Þ ¼ ∏n
i¼1

exp Xi0 tð Þβþ Zi0ϒf g
∑j∈Mi

Wj exp Xij tð Þβþ Zijϒ
� � (4)
where Wi is the inverse of the selection probability (pi) for the ith

subject in the subcohort (ie, Wi ¼ 1
pi
) and Mi is the risk‐set including

the subjects in an NCC design who were being followed at the case

i''s event time. Note that this approach assumes that the risk in Mi is

constructed at random among the subjects included in an NCC

design. Here, the regression parameter β may correspond to the

log of the hazard ratio for a unit change of Xij(t), after adjusting for

the matching factors.

This approach has been used to analyze secondary events

observed other than the primary for cases in the design.12,13 This

approach can be viewed as a selection bias‐corrected analysis but

breaks the matched design. When the study design implements the

matching at a sample level, breaking the matching introduces the var-

iability that cannot be properly controlled in the analysis. Also, it may

reduce the efficiency. For example, in Figures 1 and 2, if participant 5

was a control for participant 1, the pair could have processed three

samples at 3, 6, and 9 months in the same batch by the sample‐level

matching. In this weighted Cox regression analysis, participant 5 can

be also in risk‐sets 2 and 3, but this participant's information is incom-

plete for those risk‐set analyses since those three samples would have

been only analyzed by the NCC design.
3 | WEIGHTED CONDITIONAL LOGISTIC
REGRESSION FOR NESTED CASE‐CONTROL
ANALYSIS

In Equation (1), the assumption that the selection in the design is ran-

dom leads to the standard conditional likelihood for inference in Equa-

tion (3). In an NCC design, all cases are included, so the assumption

remains true for cases {ie, P(S = 1| Y = 1,X,Z) = 1}. However, the assump-

tion for the selection of controls {ie, P(S = 1| Y = 0,X,Z) = P(S = 1| Y = 0,Z)}

may not be true. When P(S = 1| Y = 0,X,Z)≠ P(S = 1| Y = 0,Z), instead of

Equation (2), the log odds for an NCC design becomes as follows:

logitP Y ¼ 1jS ¼ 1; X; Zð Þ ¼ logitP Y ¼ 1jX; Zð Þ − log P S ¼ 1jY ¼ 0; X; Zð Þf g
(5)

Then, by denotingWij as the inverse of the selection probability {ie,

1
P S ¼ 1∣Y ¼ 0; X; Zð Þ} for the jth subject in the ith set, the standard

conditional likelihood (3) becomes

L βð Þ ¼ ∏n
i¼1

exp Xi0 tð Þβf g
∑j∈RsiWij exp Xij tð Þβ

� � (6)

which is the conditional likelihood for weighted conditional logistic

regression. Note that the set Rsi stays the same as (3) by keeping

the matching in the design.

Since the full cohort from which the NCC design participants are

selected is available, the full cohort data can be used to estimate the

selection probability P(S = 1 ∣ Y = 0,X,Z) for those selected controls.

We fit a logistic regression model on the factor of interest X and the
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matching factor Z for the estimation of the selection probability. If we

have complete data on X and Z, the probability estimator is expected

to be unbiased. However, X is most likely unavailable in the full cohort

since an NCC design is utilized to avoid having to collect that in the

full cohort. Also, as a part of Z, the risk‐set matching for an NCC

design needs to be translated to an individual level in the full cohort.

Instead of X and the risk‐set matching, we use proxy variables that

can explain the selection in an NCC design. Our motivation to consider

P(S = 1| Y = 0,X,Z)≠ P(S = 1| Y = 0,Z) is when controls' sample availabil-

ity is incorporated in the selection of controls for biomarker studies.

Moreover, the size of risk‐set, which can directly affect the probability

of control selection, is mostly determined by the duration of follow‐

up. Thus, we propose to use those factors related to the study compli-

ance or duration of follow‐up as the proxy variables.

This inverse selection probability weighting approach is also useful

when the characteristics for event‐free subjects using the data from

an NCC design are of interest. When matching factors other than

risk‐set were used in an NCC design, the characteristics in selected

controls become similar to their cases, rather than those in event‐free

participants in the cohort. Hence, the controls included in an NCC

design cannot be directly used to make inference on event‐free popu-

lation about the characteristics collected in an NCC design. In this con-

text, this selection bias‐corrected approach can also help make the

inference.
4 | APPLICATION: TEDDY NESTED
CASE‐CONTROL DESIGN

TEDDY is a prospective cohort study across six participating clinical

centres: the Pacific Northwest Diabetes Research Institute, Seattle,

Washington; the Barbara Davis Center, Denver, Colorado; a combined

Georgia/Florida site at the Medical College of Georgia, Augusta, Geor-

gia and the University of Florida, Gainesville, Florida; University of

Turku (Turku, Oulu, and Tampere, Finland); Lund University, Malmö,

Sweden; and the Diabetes Research Institute, Munich, Germany.14,15

TEDDY enrolled 8676 children before 4.5 months of age through

newborn screening for high‐risk HLA‐DR‐DQ genotypes and will fol-

low them up until 15 years of age to identify genetic and environmen-

tal triggers of type 1 diabetes (T1D). The protocol was approved by

Institutional Review Boards at participating centres, and all partici-

pants provided written informed consent before participation in the

study.

In order to perform analyses across various biomarkers, TEDDY set

up two NCC designs: one for islet autoimmunity (IA, the prediabetic

endpoint) and the other for T1D. At close of the cohort for the NCC

design (ie, sampling time), the median follow‐up age was 40 months

(first quartile = 25 and the third quartile = 60). Additional matching

factors were having a first‐degree relative with T1D (T1D family his-

tory), sex, and clinical centre located in the region where the partici-

pant was enrolled. TEDDY selected controls based on their sample

availability in the six potential controls randomly selected from each

risk‐set.16 This was not completely a selective selection, but the bias
could still affect the analysis. For example, if three controls were ran-

domly selected, through 100 bootstrap samples, the odds ratio for a

factor can be expected to be 1.89 with 95% confidence interval

(1.87, 1.91). But if the factor was analyzed in the 1 to 3 TEDDY

NCC design,8 the odds ratio estimate is 1.96.

TEDDY recently investigated whether plasma 25(OH)D concentra-

tion (nmol/L) throughout childhood is associated with development of

IA in the 1 to 3 TEDDY NCC design.8 The childhood 25(OH)D concen-

tration was defined as the average of 25(OH)D measured up to each

case's event time. The authors analyzed 376 matched sets including

1041 controls with at least one measure of 25(OH)D prior to each

case's event time, using standard conditional logistic regression. There

was a total of 1375 participants: 376 participants developed IA and

999 participants who were IA‐free at sampling time. We used these

data to illustrate our proposed selection bias‐corrected analysis.
4.1 | Selection probability estimation

Since cases are also potential controls until they develop the event of

interest, the population for event‐free subjects (ie, Y = 0) includes

cases by their event time, as well as event‐free subjects by their cen-

sored time at the time of design. A logistic regression model was used

to estimate the selection probability for being included as a control in

the NCC design for IA. We considered the factors related to retention

in TEDDY as proxy variables. Previously, TEDDY identified such fac-

tors as country where the participant was enrolled, sex, illness experi-

enced during the first year, maternal age, father's study participation,

maternal lifestyle behaviours, and accuracy of the mother's risk per-

ception.17,18 Therefore, the logistic regression model considered the

matching factors (T1D family history, child's sex, and clinical centre),

the observed age (age of IA for IA cases and age of censoring at

sampling for IA‐free children), and those preidentified factors

related to drop‐outs in TEDDY. The final model included the factors

with P < 0.1 (shown in Table 1). As expected, the matching factors

were significantly associated with the control selection, along with

the observed age showing older children being more often included.

Participants with characteristics associated with higher compliance

were more likely to be included as controls (positive father's study par-

ticipation, older maternal age, and more reported illnesses within the

first year). The selection probability was estimated from the final logis-

tic regression model fit.
4.2 | Computation

For the selection bias‐corrected analyses, the inverse of the selection

probability estimate was applied as a weight for the regression param-

eter estimation. Taking into account the variability of the selection

probability estimation, the jackknife variance was calculated and an

approximation of the 95% confidence interval was obtained. Without

weighting, the standard likelihood analysis was applied to obtain the

regression parameter estimate and 95% confidence interval.



TABLE 1 Estimates of selection model by logistic regression from
the TEDDY full cohort

Odds

Ratio

95% Confidence Interval

Lower Upper

Observed age, mo 1.027 1.024 1.030

Clinical centre Colorado 0.780 0.637 0.954

Georgia 0.597 0.462 0.771

Washington 0.576 0.457 0.725

Finland 1.139 0.966 1.344

Germany 0.928 0.714 1.207

Sweden 1

Sex Girls 0.758 0.668 0.861

Boys 1

T1D family history Yes 3.320 2.793 3.946

No 1

Father's participation Yes 1.855 1.166 2.952

No 1

Maternal age, y 1.018 1.005 1.031

Number of illness in the first year 1.016 0.999 1.033
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As an illustrative purpose, Cox regression was applied after

adjusting for those additional matching factors, in order to examine

the association between childhood 25(OH)D concentration and IA.

The average of 25(OH)D was analyzed as a time‐varying covariate

by calculating it in each risk‐set. Without a weighting, ignoring the

NCC design, this produces a biased analysis since those subjects in

the NCC design are handled as if they were the full TEDDY cohort.

As shown in Table 2, the biased regression parameter estimate was

−0.011 (95% confidence interval: −0.019, −0.003). The standard anal-

ysis using conditional logistic regression estimated the parameter

−0.015 (−0.023, −0.007). Although this is supposed to be the best, it

may be also biased due to the moderate selective control selection

based on the sample availability in TEDDY. In applying weighted Cox

regression adjusted for the matching factors, the parameter estimate

became −0.013 (−0.026, 0.0004), with a slightly larger variation. When

we applied the proposed weighted conditional likelihood, the estimate

was −0.020 (−0.033, −0.007), showing a stronger negative effect size

than the one using conditional logistic regression.
TABLE 2 Association between childhood 25(OH)D concentration (avera
25(OH)D analysis

Approach

Selection
Bias

Correction Likelihood

Keeping the matchinga Without Conditionalc

With Weighted condit

Breaking the matchingb Without Partialc

With Weighted partia

aConditional logistic regression was used. Childhood 25(OH)D concentration wa
bCox regression adjusted for clinical centre, sex, and T1D family history was use

analyzed as a time‐dependent covariate.
cLikelihood variance estimation.
dJackknife variance estimation.
We also summarized the childhood 25(OH)D concentration by the

case‐control status (Table 3). By the nature of the design, the data for

controls are available only up to the time of event of the cases to

whom they were matched. If a case was also included as a control

for another case, breaking the matching implies that the data as a con-

trol from the case are excluded from the analysis. On the other hand,

our approach that keeps the matching includes the data as a control

from the case, by the assumption that the matched sets are indepen-

dent of each other by the design. The mean childhood 25(OH)D

concentration was 51.33 nmol/L (standard deviation of 16.82) in the

cases and 54.63 nmol/L (16.77) in the controls, respectively. When

the proposed weighting was applied, the weighted mean in the con-

trols was 55.04 nmol/L (17.21).
5 | SIMULATIONS

Based on theTEDDY data, a simulation study was conducted to assess

the bias when a nonrandom control selection was ignored in an NCC

design. The controls selected were determined by the 1 to 3 TEDDY

NCC design. The prevalence model for IA given a covariate X was

determined from the logistic regression model fit as logitP(Y = 1|

Za) = − 3.1533+g(Za) in the TEDDY cohort. When Za denotes the

matching factors other than the risk‐set, g(Za) = − 0.0365 * Colorado

− 0.3430 * Georgia − 0.4431 * Washington+0.4103 * Finland

+0.0610 * Germany+1.0339 * FDR − 0.2423 * Girl in theTEDDY design.

All variables are indicators; for example, FDR = 1 if the child has a

T1D family history as defined in TEDDY. We assumed the prevalence

model for IA given a covariate X as

logitP Y ¼ 1jX; Zað Þ ¼ β0þ g Zað Þ þ β*X (7)

Based on the invariance property of the odds ratio, we assumed

the covariate model for X as logitP(X = 1| Y,Za) = g(Za)+β * Y, resulting in

P X ¼ 1jY; Zað Þ ¼ 1= 1þ exp −g Zað Þ − β*Yð Þf g (8)

Assuming the control selection from event‐free subjects in the

cohort also depended on X and Za, the selection model can be written
ge by event time, nmol/L) and islet autoimmunity (IA) in the TEDDY

Regression
Parameter

Estimate

95% Confidence
Interval

Lower Upper

−0.015 −0.023 −0.007

ionald −0.020 −0.033 −0.007

−0.011 −0.019 −0.003

ld −0.013 −0.026 0.0004

s calculated with the measures by the case's age of IA for each matched set.

d. Childhood 25(OH)D concentration was calculated at each risk‐set to be



TABLE 3 The mean 25(OH)D concentration (nmol/L) at the status of IA free in the TEDDY 25(OH)D analysis

Characteristics of

N
Mean(Standard
Deviation)

376 51.33 (16.82)

Cases Selection bias

correction

Controls (keeping the matching) Without Controls 1041 54.63 (16.77)

With Event‐free subjects in the cohort 1041 55.04 (17.21)

Event‐free subjects (breaking the

matching)

Without Selective event‐free subjects at the time of the design 999 54.83 (16.74)

With Event‐free subjects at the time of the design, by the cases'

event time

999 55.11 (17.24)
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as logitP(S = 1| Y = 0,Za,X) = r(Za)+α * X, where r(Za) is a linear function

of Za and α is the selection parameter for the dependency between S

and X. Then, we can assume logitP(X = 1| Y = 0,Za,S) = s(Za)+α * S,

resulting in

logitP X ¼ 1jY ¼ 0; Za; S ¼ 1ð Þ − logitP X ¼ 1jY ¼ 0; Za; S ¼ 0ð Þ ¼ α

(9)

Using (8), we first generated X for the cases (Y = 1), given β (effect

size). For event‐free subjects (Y = 0), using (8) and (9), X was generated

for those selected as controls (S = 1) and those not selected in the

cohort (S = 0), respectively, given β and α.

Based on the randomly generated X and the given factor Z, we

estimated P(S = 1| Y = 0,Z,X) by fitting a logistic regression model

and obtained the estimate of β using the standard conditional logistic

regression ignoring the nonrandom selection, as well as the proposed

conditional logistic regression weighted by the inverse selection prob-

ability. Then, the relative bias was obtained as the difference from the

estimate of β by fitting the likelihood (6) in the simulated cohort. Two

selection probabilities were considered for Z: (1) the matching factors

other than risk‐set (ie, Za) and (2) in addition to (1), the proxy variables

for the risk‐set matching, which are the observed age, father's study

participation, maternal age, and illness within the first year. This pro-

cess was repeated 100 times, and the mean and standard deviation

of the relative bias are reported in Table 4.

Without the correction, the estimate of β tends to be greater than

the true β (ie, positive relative biases). A stronger selection parameter

showed greater bias when the nonrandom selection was ignored. With

the correction, bias was reduced but still remained. We suspect that

this is because the simulated biases were generated without reflecting

the risk‐set matching when the controls selected were based on that.

The bias reduction varied depending on the combination of effect size

and selective parameter, but it was generally improved when the

proxy variables for the risk‐set matching were considered in the selec-

tion probability estimation.

6 | DISCUSSION

NCC studies are particularly advantageous for longitudinal biomarker

studies as they can reduce the high cost and labour associated with

collecting complete data in prospective cohort studies. The choice of
this design for biomarker studies is growing, not only because it

requires a small selection of noncases but also because the design

can be used with greater flexibility to match on longitudinal variables

such as the sample availability/compliance. As the NCC studies

become more popular and more flexibly designed, the importance of

how well the choice of statistical tool fully respects the way the study

is constructed will be vital to produce valid findings from the study.

A key aspect of an NCC design is the selection of a control to pair

with a case at a specific time based on the case's event. The control is

selected among the event‐free subjects at the specific time unique to

each case (ie, the risk‐set matching). The chance of the selection must

be independent of when the subjects drop‐out of the study or later

become a case themselves in the full cohort (ie, between risk‐set inde-

pendence). In practice, often a desire is to avoid selecting any controls

that become eventually cases in the closed cohort at the time of the

design. However, this modifies the risk‐sets and violates the between

risk‐set independence. Then, the design becomes neither an NCC

design nor a case‐control design, and no standard statistical methods

for either design will produce valid analyses. If the implementation

of an NCC design maintained the between risk‐set independence,

the choice of analytical tool should be one of those methods condi-

tioning on the matching. When the matching is ignored (ie, broken),

no statistical modelling will be sufficient to remove the bias given

the complexity of longitudinal matching nested within the subject

level of matching. For this reason, breaking the matching should be

the last choice in the NCC data analysis.

In this paper, we considered when controls were selectively cho-

sen within a risk‐set, in order to avoid selecting controls without

necessary data for the implementation of an NCC design. We pro-

posed an inverse probability weighting within the matching strata

and analyzed the NCC data with weighted conditional logistic

regression. Although weighted Cox regression has been available

for nonrandom NCC design, this technique requires the matching

to be broken and considers those included in the design as a

subcohort. This application fails to support the choice of an NCC

design to begin with. In order to estimate the selection probability

of controls, we used a logistic regression model with the factors

related to drop‐out and compliance.

We illustrated our approach using the TEDDY data analysis.

However, the TEDDY NCC design was not completely selective



TABLE 4 Simulation results from 100 replications: relative bias (empirical standard deviation)

True Effect Size β Selection Parameter α

Conditional Logistic Regression

Without
Selection

Bias
Correction

With Selection Bias Correction

Selection Probability Estimation

on the Matching Factors Other
than Risk‐Set

Selection Probability Estimation on the
Matching Factors Other than Risk‐set +
TEDDY Compliance Factors Including the
Observed Age

−2.0 −1.25 0.972 (0.065) −0.200 (0.054) −0.174 (0.065)

−0.75 0.592 (0.069) −0.360 (0.071) −0.351 (0.079)

−1.5 −1.25 0.984 (0.061) −0.075 (0.048) −0.038 (0.063)

−0.75 0.596 (0.059) −0.224 (0.058) −0.213 (0.067)

−1.0 −1.25 0.995 (0.061) 0.083 (0.055) 0.135 (0.071)

−0.75 0.602 (0.056) −0.080 (0.050) −0.059 (0.062)

−0.02 −1.25 1.012 (0.070) 0.663 (0.150) 0.726 (0.148)

−0.75 0.608 (0.061) 0.295 (0.074) 0.342 (0.084)
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since six potential controls were randomly selected first, from which

three were selected based on availability of samples. Therefore, the

difference we presented between with and without weighting in

the conditional logistic regression analysis may not be greater than

that if the design was completely selective. In our simulation study,

we kept the status of TEDDY case‐control and considered two types

of selection probability estimation with and without proxy variables

for the risk‐set matching. We showed the bias in the analysis

without weighting and the bias reduction in weighted conditional

logistic regression with both types of weighting. The weighting that

considered those factors for the risk‐set matching performed better

in general but still failed to remove the bias completely. It is likely

because the simulated biases did not reflect the risk‐set matching

when the TEDDY control status was used. Nevertheless, perfor-

mance may be improved with better estimates of the selection in a

future study.
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