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BACKGROUND AND OBJECTIVES: Few birth cohorts have prospectively followed development of type 
1 diabetes (T1D) and celiac disease (CD) autoimmunities to determine timing, extent of 
co-occurrence, and associated genetic and demographic factors.
METHODS: In this prospective birth cohort study, 8676 children at high genetic risk of both 
diseases were enrolled and 5891 analyzed in median follow-up of 66 months. Along 
with demographic factors and HLA-DR-DQ, genotypes for HLA-DPB1 and 5 non-HLA loci 
conferring risk of both T1D and CD were analyzed.
RESULTS: Development of persistent islet autoantibodies (IAs) and tissue transglutaminase 
autoantibodies (tTGAs), as well as each clinical disease, was evaluated quarterly from 3 to 
48 months of age and semiannually thereafter. IAs alone appeared in 367, tTGAs alone in 
808, and both in 90 children. Co-occurrence significantly exceeded the expected rate. IAs 
usually, but not always, appeared earlier than tTGAs. IAs preceding tTGAs was associated 
with increasing risk of tTGAs (hazard ratio [HR]: 1.48; 95% confidence interval [CI]: 1.15–
1.91). After adjusting for country, sex, family history, and all other genetic loci, significantly 
greater co-occurrence was observed in children with a T1D family history (HR: 2.80), 
HLA-DR3/4 (HR: 1.94) and single-nucleotide polymorphism rs3184504 at SH2B3 (HR: 1.53). 
However, observed co-occurrence was not fully accounted for by all analyzed factors.
CONCLUSIONS: In early childhood, T1D autoimmunity usually precedes CD autoimmunity. 
Preceding IAs significantly increases the risk of subsequent tTGAs. Co-occurrence is 
greater than explained by demographic factors and extensive genetic risk loci, indicating 
that shared environmental or pathophysiological mechanisms may contribute to the 
increased risk.
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What’s Known on This Subject: Children 
with type 1 diabetes (T1D) are at greater risk 
of celiac disease (CD), and screening them for 
transglutaminase autoantibodies (tTGAs) is useful. 
T1D and CD share high-risk HLA-DR-DQ genotypes DR3 
and DR4, which partly explains disease overlap.

What This Study Adds: Early markers of T1D and 
CD autoimmunity coincide more than expected. 
Overlap associates with familial T1D, HLA-DR3/4, 
and SH2B3, but is not fully explained by known risk 
factors. T1D autoantibodies usually precede tTGAs 
and confer significant risk of subsequent tTGAs.
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Celiac disease (CD) and Type 1 
diabetes (T1D) involve autoimmune 
attacks on small bowel mucosa 
and on pancreatic islet β cells, 
respectively. Both diseases have a 
strong genetic predisposition‍1,​‍2 and 
most often begin in early childhood.‍3,​‍4  
A subclinical or preclinical phase 
is characterized by autoantibody 
positivity with minimal symptoms.3,​‍5,​‍6  
Later, more severe target organ 
dysfunction appears, prompting 
clinical diagnosis and treatment.

The frequent coexistence of T1D 
and CD is widely described, but 
most researchers measure future 
risk of CD in children with previous 
T1D. This ranged from 2.5% to 
16.4% (5.7% overall) in 23 studies 
worldwide,​‍7 much greater than 
background CD rates. Conversely, 
studies of subsequent T1D in children 
with previous CD also revealed 
significantly more T1D than in 
non-CD controls.‍8,​‍9 Presence of either 
disease therefore appears to increase 
the risk of developing the other.

Commonly postulated reasons for 
concurrent CD and T1D include 
shared HLA genetic risk‍10‍‍–‍13 and 
shared environmental exposures.8,​‍14  
Genetics are indeed important in 
CD, with ∼75% monozygotic twin 
concordance and 10% of first- 
degree relatives (FDRs) affected.‍2 
Genetics are similarly important  
in T1D, with ∼42% monozygotic  
twin concordance and 6% to 8% 
FDRs affected.‍1 These genetic 
effects are greater than for most 
autoimmune diseases, perhaps 
because of a remarkably large effect 
of HLA Class II on both diseases. HLA-
DR-DQ accounts for ∼40% to 50% of 
the overall T1D genetic risk,​‍15  
and 53% of that for CD, using 
modern prevalence estimates.2 The 
2 common haplotypes conferring 
increased risk in both diseases are 
DRB1*04-DQA1*03:01-DQB1*03:02 
(commonly referred to as the 
DR4-DQ8 haplotype, abbreviated 
DR4) and DRB1*03-DQA1*05:01-
DQB1*02:01 (commonly referred to 

as DR3-DQ2 haplotype, abbreviated 
DR3). In T1D, DR4 confers greater 
risk than DR3, but DR3/DR4 
heterozygotes are at the greatest 
risk.‍15 For CD, DR3 confers more risk 
than DR4, and DR3/DR3 confers the 
greatest risk.‍2 Studies of the absolute 
CD risk conferred by HLA-DR-DQ 
in unbiased populations (without 
symptoms, other autoimmunity, or 
family history [FH]) are sparse, but 
The Environmental Determinants 
of Diabetes in the Young (TEDDY) 
study recently published multicenter 
risk estimates for several high-risk 
HLA antigen genotypes that were 
consistent with most previous 
literature.‍4 HLA-DR-DQ strongly 
influences both diseases and the risk-
conferring haplotypes are shared, 
so substantial disease overlap is 
expected solely on that basis. CD and 
T1D are also concurrently influenced 
by >10 other genetic loci,​‍10,​16‍–‍18 
conferring smaller hazard ratios 
(HRs) in the 1.14 to 1.35 range but 
with independent effects that may be 
cumulative. However, for only 6 loci 
(HLA-DPB1, RGS1, SH2B3, CTLA4, 
CCR3/CCR5, and PTPN2) does the 
relevant polymorphism affect both 
diseases in the same direction, 
therefore potentially increasing 
disease co-occurrence.‍10

The TEDDY study is an international 
study of 8676 infants with many 
years of frequent prospective 
observation.‍19 The major inclusion 
criterion of elevated HLA antigen 
risk for T1D‍20 also confers 
elevated CD risk. Frequent blood 
sampling enabled accurate timing 
of seroconversion for both islet 
autoantibodies (IAs) and tissue 
transglutaminase autoantibodies 
(tTGAs). The cohort underwent 
extensive additional genotyping. 
TEDDY thus represents an 
unprecedented opportunity to 
describe the extent and timing of 
co-occurrence of the 2 diseases. The 
aim of this study was to investigate if 
1 disease might trigger the other, and 
to test if their co-occurrence can be 

explained by common inherited risk 
genes.

Methods

The TEDDY Cohort and HLA 
Genotyping

TEDDY is a prospective cohort study 
designed to identify environmental 
causes of T1D.‍19 From 2004 to 2010, 
424 788 newborns were screened at 
6 US and European centers. TEDDY 
enrolled 8676 infants with high- 
T1D–risk HLA antigen genotypes 
by 4.5 months of age, with intent 
to manage until age 15 years. 
Eligible HLA-DR-DQ genotypes are 
abbreviated DR3/4, DR4/4, DR4/8, 
and DR3/3 (Supplemental Table 2).  
Of 8676 TEDDY enrollees, 5891 
were analyzed herein on the basis of 
full autoantibody characterization, 
genotyping on the ImmunoChip, and 
carrying 1 of the 4 major TEDDY-
eligible HLA genotypes. Frequencies 
of all eligible HLA genotypes for each 
center are given in Supplemental 
Table 3. At the time of analysis, 
median follow-up was 66 months 
(range 10–111 months, interquartile 
range [IQR] 50–81 months), covering 
32 454 person-years of observation. 
Local institutional review board 
approval and parental informed 
consent was obtained for all children. 
The study is monitored by an 
External Evaluation Committee of the 
US National Institutes of Health.

Autoantibody Measurements

Glutamate decarboxylase 
autoantibodies, insulinoma 
antigen-2 autoantibodies, and 
insulin autoantibodies (IAAs) were 
measured in 2 harmonized core 
laboratories by using radiobinding 
assays incorporating extensive 
quality control.‍21 Persistent islet 
antibodies (IAs) were defined as 
positive antibodies to the same 
antigen confirmed by both core 
laboratories in 2 consecutive 
samples.‍19 Tissue tTGAs were 
screened by radiobinding assay 
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in 2 laboratories with final status 
determined by a central reference 
laboratory as previously described.‍4,​‍21  
Persistent tTGAs were defined as 
positive tTGAs test results in 2  
consecutive samples. Only persistent 
IAs and tTGAs are considered in the 
current analyses.

Prospective Follow-Up

The TEDDY protocol specifies serum 
collection every 3 months from 
ages 3 to 48 months and at least 
every 6 months thereafter. IAs were 
measured in every available sample. 
Concurrent diseases including T1D 
and CD in the TEDDY child, and 
immediate family were noted at 
each visit. T1D was defined by using 
American Diabetes Association 
criteria. tTGA testing began at age 
24 months and continued annually. 
If the results of any sample were 
positive, all previous samples 
from that child were analyzed 
to determine when tTGAs first 
appeared. Celiac symptoms were 
uncommon at the time of tTGA 
seroconversion.‍5 Parents of children 
with persistent tTGAs were notified 
and encouraged to pursue further 
evaluation under guidance of their 
physician. This likely led to more 
rapid ascertainment of CD in study 
than in general medical practice. 
In similar fashion, IA surveillance 
and early T1D ascertainment via 
glucose tolerance testing was also 
a feature of TEDDY.‍22 The decision 
on duodenal biopsy was outside of 
the study protocol, but if a biopsy 
were performed, a Marsh score of 
≥2 defined CD. For individuals who 
did not receive a biopsy, a mean 
persistent tTGAs ≥100 U based 
on 2 consecutive samples was 
>95% specific for CD and therefore 
considered diagnostic herein.‍4 
Children developing T1D were no 
longer on study protocol, but phone 
interviews and medical records 
reviews enabled determination of 
subsequent tTGA status, CD status, 
biopsy results if any, and use of a 

gluten-free diet in 150 out of 167 
(90%) of these individuals. At 
the time of analysis, clinical T1D 
occurred in 138 (2.3%), CD in 323 
(5.5%), and both diseases developed 
in 18 (0.3%) of the 5891 screened 
participants, (‍Fig 1). The low number 
of subjects concurrently diagnosed 
with T1D and CD in early childhood 
limited detailed subanalysis of 
factors influencing T1D and CD 
co-occurrence. We therefore focused 
on IAs and tTGAs as earlier and more 
prevalent disease markers.

Single-Nucleotide Polymorphism 
Genotyping

In addition to HLA-DR-DQ alleles, 
the cohort was genotyped for single-
nucleotide polymorphisms (SNPs) by 
the Illumina ImmunoChip covering 
186 genomic regions associated 
with 12 autoimmune diseases.‍23 
SNP markers with call rates <90% 
or allele distributions strongly 
deviating from Hardy-Weinberg 
equilibrium in controls (P < 10−6) 
were discarded (except within the 
HLA region). Individuals with call 
rates <95%, or those discordant with 
reported sex or previous genotyping 

were also discarded. This resulted 
in data on ∼176 586 SNPs in each of 
7023 subjects. SNP genotypes were 
used to determine HLA-DPB1, and 
5 other loci reported to affect both 
T1D and CD in the same direction: 
RGS1, SH2B3, CTLA4, CCR3/CCR5, and 
PTPN2 (Supplemental Table 4).

Statistical Methods

Excess co-occurrence was 
calculated by comparison with the 
expected along with the Wilson 
95% confidence interval (CI). 
Excess proportion was compared 
by using Fisher’s exact test. To 
explore the pattern of appearance 
of each autoantibody (IAs and 
tTGAs) or disease (T1D and CD), the 
proportion of event-free survival 
in which Kaplan-Meier estimates 
were used was plotted against age of 
seroconversion or diagnosis. Age was 
compared between groups by using 
the Wilcoxon rank sum test.

A Cox proportional hazards model 
was used to investigate factors 
associated with IA and tTGA 
co-occurrence. Time to co-occurrence 
was defined as age of seroconversion 
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FIGURE 1
Venn diagram showing the overlap of IAs and tTGAs as well as T1D and CD in cross-sectional prevalence 
of 5891 TEDDY cohort subjects at a median age of 66 months. Only persistent autoantibodies are 
counted (see Autoantibody Measurements section in Methods). Not shown is 1 subject with T1D and 
tTGAs but no IAs.
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for the following autoimmunity. 
The right-censored time was age 
at last sample collection. The 
model considered country, sex, 
and FH of T1D or CD (defined as an 
affected FDR), in addition to HLA-
DR-DQ, HLA-DPB1, and the 5 other 
relevant genetic loci. Additionally, 
we examined the effect of each 
autoantibody on appearance of the 
other. For example, the effect of 
IAs preceding tTGAs on the risk of 
tTGAs was assessed (by using age of 
tTGA appearance as time to event) 
as compared with those without IAs 
at the time of tTGA appearance. Two 
sided P values < .05 were considered 
significant. SAS 9.4 Software (SAS 
Institute, Cary, NC) was used for all 
analyses.

Results

The proportion of children who 
tested positive for IAs that developed 
T1D was 130 out of 457 (28.5%) 
compared with 8 out of 5434 (0.15%) 
of children who tested negative 
for IAs. The proportion of children 
who tested positive for tTGAs that 
developed CD was 321 out of 898 
(35.8%) compared with 2 out of 
4993 (0.04%) of children who tested 

negative for tTGAs. A total of 367 
(6.2%) participants had IAs but not 
tTGAs, 808 (13.7%) had tTGAs but 
not IAs, and 90 (1.5%) had both  
(‍Fig 1). Assuming independence and 
assuming the observed proportion 
of tTGAs and IAs in TEDDY are 
accurate estimates of corresponding 
population proportions, the product 
of the observed IA and tTGA 
proportions represents the expected 
proportion of having both antibodies. 
The observed IA prevalence was 
457 out of 5891 (7.8%), whereas 
that for tTGAs was 898 out of 5891 
(15.2%). We therefore expected IAs 
and tTGAs to occur together in 1.19% 
(7.8%*15.2%) or 70 children. The 
observed prevalence of 90 out of 
5891 (1.53%) revealed a significant 
excess of 20 children or 0.34% (95% 
CI: 0.21%–0.52%). Subgroups by 
country, sex, FH of T1D and of CD, 
HLA-DR-DQ, and other genetic loci 
each retained significant excess 
co-occurrence of IAs and tTGAs 
(Supplemental Table 5). In examining 
the proportion of children with each 
autoantibody, it can be seen that 
having IAs increased the proportion 
with tTGAs from 14.9% to 19.7% 
(‍Fig 2A). Conversely, having tTGAs 
increased the proportion with IAs 

from 7.4% to 10.0% (‍Fig 2B). This 
represents a 32% greater prevalence 
of tTGAs in those with IAs, and a 36% 
greater prevalence of IAs in those 
with tTGAs. Increases were observed 
across all individual HLA genotypes 
but were only significant for DR4/4 
(P = .017) and for the combined data 
set of all HLA genotypes (P = .012).

Given the prospective nature of 
the TEDDY study, it is possible to 
extend the cross-sectional data of 
‍Fig 1 to examine the development 
of autoimmunity over time. 
Seroconversion for each of IAs 
and tTGAs was greatest in the first 
few years of life (‍Fig 3). When 
considered separately, the median 
age at seroconversion for IAs was 
24 (IQR: 14–38.5) months and for 
tTGAs was 33 (IQR: 24–45) months 
(P < .0001). There was no significant 
difference in age at seroconversion 
when comparing those with 1 type 
of autoimmunity to those with both. 
Within the current follow-up, T1D 
was on average diagnosed earlier 
than CD (T1D at 36 [23–56] months; 
CD at 42 [34–57] months; P = .0007). 
Of the 90 individuals with both IAs 
and tTGAs, 5 (6%) developed the 
autoantibodies simultaneously, 61 
(68%) developed IAs first at 24 
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FIGURE 2
Cross-sectional analysis of autoantibody prevalence. A, Comparison of transglutaminase autoantibodies (CDA) prevalence in those with IAs versus those 
without IAs on fixed individual HLA-DR-DQ backgrounds as shown. B, Similar comparison of IA prevalence in those with or without tTGAs. The rightmost bars 
in each panel show the comparison when all 4 HLA antigen backgrounds are combined.
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(14–38.5) months, and 24 (27%) 
developed tTGAs first at 33 (24, 45) 
months (P < .0001). Comparative 
timing of IAs versus tTGAs was not 
different when comparing glutamate 
decarboxylase autoantibodies or IAAs 
as the specific IAs (Supplemental  
Fig 4). Greater HLA-DR3 gene dosage 
conferred shorter median time 
interval from development of IAs to 
tTGAs (median 2 months in DR3/3, 
14 months in DR3/4, and 18 months 
in DR4/4 or DR4/8) (Supplemental 
Fig 5). The median time from tTGAs 
to CD was 11.6 (IQR: 7.9–16.1) 
months, significantly shorter than 
that from IAs to T1D at 17.2 (7.7–35.7)  
months (P < .0001).

A Cox Proportional Hazards 
model was used to examine risk 
factors for each individual type of 
autoimmunity, including whether 
each autoantibody influenced the risk 
for developing the other (‍Table 1).  
Known risk factors for each type 
of autoimmunity showed expected 
results in the adjusted model. Factors 
associated separately with increased 
IAs and with increased tTGAs 
included the countries of Finland or 
Sweden and HLA-DR3/4. HLA-DR3/3 
increased tTGA risk but decreased IA 
risk versus the reference genotype. 
As expected, having an FDR with 

CD increased tTGA risk but not IA 
risk, and having an FDR with T1D 
increased IA risk but not tTGA risk. 
RGS1 (rs2816316) and CTLA4 
(rs3087243) were associated with 
increased tTGA risk, whereas SH2B3 
(rs3184504) was associated with 
increased IA risk. Importantly, in 
unadjusted analysis, IAs preceding 
tTGAs was associated with greater 
risk of tTGAs (HR: 1.30; 95% CI: 
1.01–1.67), but tTGAs preceding IAs 
was not associated with risk of IAs 
(HR: 1.01; 95% CI: 0.69–1.50). Using 
a similar model adjusted for all other 
factors did not change this finding; 
IAs preceding tTGAs was significant 
(HR: 1.48; 95% CI: 1.15–1.91), 
whereas tTGAs preceding IAs was not 
(HR: 1.12; 95% CI: 0.75–1.67). The 
Cox Proportional Hazards model was 
then used to analyze demographic 
and genetic factors conferring risk of 
co-occurrence of IA and tTGA (‍Table 1).  
After adjustment for country, sex and 
having an FDR with CD, HLA-DR-DQ, 
HLA-DPB1 and the 5 SNPs at RGS1, 
SH2B3, CTLA4, CCR3/CCR5, and 
PTPN2, we found HLA-DR3/4 (HR: 
1.94; 95% CI: 1.12–3.35), having an 
FDR with T1D (HR: 2.69; 95% CI: 
1.54–4.67) and rs3184504 at SH2B3 
(HR = 1.53, 95% CI: 1.14–2.05) were 
each independently associated with 
co-occurrence of IAs and tTGAs.

Discussion

The appearance of CD in existing T1D 
patients is widely appreciated.‍7 Our 
results analyze this relationship in 
a prospective manner at an earlier 
stage when autoantibodies to the 
respective diseases first develop. 
These autoantibodies are highly 
predictive of clinical disease and may 
be encountered more frequently as 
genetic screening and personalized 
medicine become more widespread. 
As with T1D and CD, observation in 
the first 5 years of life reveals that 
IAs precede tTGAs more often (67%) 
than vice versa (27%). Indeed, having 
IAs significantly increased the risk 
of developing tTGAs. The reverse 
relationship was not demonstrated, 
perhaps because of fewer individuals 
with the latter pattern detected 
during limited follow-up.‍24 Our 
results support the notion that 
children found to have IAs (for 
example through family screening or 
population-based prediction) should 
be screened for tTGAs, as is the 
practice for T1D children.

Having dual T1D and CD 
autoimmunity was more common 
than expected on the basis of the 
rates of each. It has been widely 
supposed that HLA antigen explains 
the overlap‍7,​‍12,​‍13 because similar 
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FIGURE 3
Timing of appearance of IAs versus tTGAs (A) and timing of diagnosis of T1D versus diagnosis of CD (B) in the TEDDY cohort managed prospectively every 
quarter from age 3 to 48 months and at least every 6 months thereafter.
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HLA-DR-DQ genotypes strongly 
predispose to both diseases. However, 
this did not appear to be the case. In a 
detailed analysis of the excess cases, 
considering HLA antigen loci, non-
HLA antigen loci, and demographic 
features (FH, country) expected 
to capture additional (although 
unmeasured) genetic influences on 
these 2 autoimmune diseases, it is 
clear that not all the observed overlap 
between the 2 diseases was accounted 
for (‍Table 1). In addition to HLA-
DR-DQ, SNP rs3184504 at SH2B3 
accounted for significant overlap, but 
the effect was modest. SH2B3 is an 
adaptor protein involved in negative 
regulation of T-cells, consistent 
with both T1D and CD being T-cell–
mediated diseases.25 Although not 
all common minor-effect variants or 
rare high-effect variants would be 
captured in the current analysis,​‍26‍–‍28 

our finding is in line with a previous 
study whose authors did not find 
major contributions by shared genetic 
risk factors for T1D and CD other than 
HLA antigen genotype.‍28 Our results 
therefore suggest that nongenetic 
factors are probably also involved.

Prospectively, IAs usually but 
not always preceded tTGAs, and 
previous IAs conferred a significantly 
increased risk of tTGAs. Although 
previous tTGA did not show a similar 
effect on subsequent IAs, there may 
have been insufficient individuals in 
this category for adequate evaluation. 
Our significant findings are in 
contrast to those of Williams et al,​‍29  
who found that tTGA prevalence 
in adults with an FH of T1D were 
not different between those with 
or without IAs, implying that tTGAs 
were not more likely in the setting 

of IAs. However, we prospectively 
managed individuals from early 
childhood when both types of 
autoimmunity first develop, which 
may explain our findings.

If preexisting T1D autoimmunity 
triggers CD autoimmunity, a possible 
mechanism might be coexpression 
of antigens from both diseases in 
the same anatomic location. tTG is 
known to be expressed in islets.‍30 
Cellular endoplasmic reticulum 
stress leads to tTG overexpression‍31 
including in stressed islets.‍32 This 
raises the intriguing possibility that 
tTG expressed in the insulitis lesion, 
in the setting of a susceptible HLA 
antigen background, might trigger 
autoimmunity to tTG. Importantly, 
the duodenum and pancreas are in 
close proximity and share draining 
lymph nodes, as shown in elegant 
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TABLE 1 �Cox Proportional Hazards Analysis of Factors Influencing Appearance of IAs and tTGAs, Their Order of Appearance, and Co-occurrence of IA and 
tTGA

Model Characteristics IAs tTGAs Co-occurrence IAs and tTGAs

HR (95% CI) P HR (95% CI) P HR (95% CI) P

Unadjusted tTGA preceding IA 1.01 (0.69–1.50) .95 — — — —
IA preceding tTGA — — 1.30 (1.01–1.67) .04 — —

Adjusted tTGA preceding IA 1.12 (0.75–1.67) .57 — — — —
IA preceding tTGA — — 1.48 (1.15–1.91) .0027 — —
Country US 1 — 1 — 1 —

FIN 1.56 (1.21–2.00) .0006* 1.24 (1.03–1.50) .027 1.60 (0.89–2.90) .12
GER 1.14 (0.76–1.71) .53 1.19 (0.87–1.64) .28 0.96 (0.36–2.56) .94
SWE 1.31 (1.04–1.65) .023* 1.57 (1.34–1.84) <.0001 1.58 (0.95–2.62) .08

HLA-DR-DQ DR 4/4 or 
4/8

1 — 1 — 1 —

DR 3/3 0.69 (0.50–0.96) .028* 5.32 (4.32–6.56) <.0001 1.88 (0.97–3.64) .06
DR 3/4 1.47 (1.18–1.82) .005* 2.05 (1.68–2.51) <.0001 1.94 (1.12–3.35) .018*

Sex Male 1 — 1 1 —
Female 0.76 (0.63–0.92) .0039* 1.61 (1.41–1.84) <.0001 1.19 (0.78–1.80) .42

T1D FDR No 1 — 1 — 1 —
Yes 2.60 (2.03–3.33) <.0001* 1.07 (0.84–1.34) .60 2.69 (1.54–4.67) .0005*

Celiac FDR No 1 — 1 — 1 —
Yes 1.01 (0.59–1.73) .97 2.02 (1.53–2.66) <.0001 0.58 (0.14–2.37) .45

RGS1 (rs2816316) 1.10 (0.94–1.30) .25 0.87 (0.77–0.99) .029 0.87 (0.59–1.30) .50
CTLA4 (rs3087243) 0.99 (0.87–1.14) .94 0.82 (0.74–0.90) <.0001 0.88 (0.65–1.19) .42
CCR3 (rs6441961) 1.04 (0.91–1.20) .57 1.06 (0.96–1.17) .29 1.20 (0.88–1.63) .25
SH2B3 (rs3184504) 1.30 (1.14–1.49) <.0001* 1.06 (0.97–1.17) .21 1.53 (1.14–2.05) .005*

PTPN2 (rs45450798) 0.96 (0.80–1.14) .61 0.99(0.87–1.12) .83 1.10 (0.76–1.60) .60
HLA-DPB1*04:01 1.17 (0.94–1.47) .16 0.86 (0.74–1.02) .08 0.72 (0.45–1.16) .18
HLA-DPB1*04:02 0.81 (0.60–1.11) .19 0.93 (0.76–1.15) .52 0.57 (0.28–1.15) .12
HLA-DPB1*01:01 1.03 (0.77–1.37) .85 1.12 (0.94–1.34) .21 0.89 (0.51–1.55) .67
HLA-DPB1*02:01 1.21 (0.93–1.57) .17 0.90 (0.73–1.10) .29 0.91 (0.52–1.60) .75
HLA-DPB1*03:01 1.28 (0.98–1.68) .08 1.08 (0.88–1.31) .48 0.85 (0.47–1.54) .59

Factors analyzed include country, sex, FH of T1D or CD, and HLA-DR-DQ, HLA-DPB1, and 5 non-HLA antigen genetic loci. FIN, Finland; GER, Germany; SWE, Sweden; US, United States; —, not 
applicable.
* P < .05

 by guest on October 10, 2017http://pediatrics.aappublications.org/Downloaded from 

http://pediatrics.aappublications.org/


cotrafficking studies.‍33 Inflammation 
in islets could thus lead to an anti-
tTG immune response in adjacent 
lymph nodes, thereby promoting CD 
autoimmunity.

The major identified environmental 
trigger for CD is ingested gluten. 
Interestingly, gluten introduction 
before 4 months or after 7 months of 
age was shown to increase T1D risk.‍34,​‍35  
Similarly, gluten exposure before 4 
months increased CD risk in some‍36,​‍37  
but not all35 studies. It has been 
proposed that both T1D and CD are 
favored by an inflammation-mediated 
increase in gut permeability,​‍38,​‍39 which 
gluten is known to cause.‍40 However, 
age at introduction of gluten was not 
found to be significantly associated 
with tTGA in TEDDY.‍41

Gut microbes, in direct contact with 
the intestinal mucosa, are also prime 
candidates to influence CD risk. 
Rotavirus infection was implicated 
in both T1D autoimmunity‍42 and CD 
autoimmunity,​‍43 but both remain 
unconfirmed. These findings are 
further supported by TEDDY findings 
that a reported gastrointestinal 
infection 3 months before was 
significantly associated with tTGA 
seroconversion.‍44 Moreover, rotavirus 
vaccination had a protective effect 
in children exposed to gluten 
before 6 months of age, indicating 
a potential interaction between 
diet and infections on the risk of 
early autoimmunity.‍44 Interestingly, 
reovirus was recently postulated to be 
implicated in CD,​45 but its role in T1D 
is unknown. Gut bacterial microflora 
also differ between cases and controls 
for both CD‍46 and T1D,​‍47 with cases 
of both diseases having fewer Gram-
positive firmicutes and more Gram-
negative bacteroides, although not all 
researchers agree and relationships 
are understandably complicated. The 
intestinal flora may therefore deviate 
in a similar way in both diseases. 
Future metagenomic analyses of 
TEDDY stool samples will test this 
possibility.

Conclusions

Early T1D and CD autoimmunity, like 
their clinical diseases, occur together 
more than expected, with IAs usually 
preceding tTGAs. In addition to genes 
and demographics, nongenetic factors 
appear to contribute to co-occurrence. 
Elucidation of relevant mechanisms 
will require additional studies of local 
immune responses as well as common 
exposures (eg, gluten and microbial 
infections) within and outside of the 
TEDDY Study.
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SUPPLEMENTAL FIGURE 4
Detailed timing of the separate appearance of IAAs, glutamate decarboxylase autoantibodies, and 
tTGAs in the TEDDY cohort.
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SUPPLEMENTAL FIGURE 5
The time interval between appearance of IAs and tTGAs. Each point (unfilled circles, crosses, or filled 
circles) represents a unique dual autoantibody-positive child. Each level includes all children from 
the specific HLA-DR-DQ genotype indicated in the legend. Vertical lines represent the median time by 
HLA antigen genotype group. The circled X’s in the lowest portion of the figure represent the mean 
and IQR for the combined group of children with any HLA antigen genotype. The greater the risk of 
CD conferred by the HLA antigen genotype, the shorter the average time interval from IAs to tTGAs 
(median 2 months in DR3/3, 14 months in DR3/4, and 18 months in DR4/4 or DR4/8).

SUPPLEMENTAL TABLE 2 �The 4 Major TEDDY HLA-DR-DQ Eligible Genotypes

HLA-DR-DQ Genotype Abbreviation

(A) DRB1*03-DQA1*05:01-DQB1*02:01/DRB1*04-DQA1*03-DQB1*03:02 DR3/4
(B) DRB1*04-DQA1*03-DQB1*03:02/DRB1*04-DQA1*03-DQB1*03:02 DR4/4
(C) DRB1*04-DQA1*03-DQB1*03:02/DRB1*08-DQA1*04:01-DQB1*04:02 DR4/8
(D) DRB1*03-DQA1*05:01-DQB1*02:01/DRB1*03-DQA1*05:01-DQB1*02:01 DR3/3

HLA-DR-DQ genotypes eligible for TEDDY and included in the current analysis. Acceptable DQB1 alleles in any haplotype 
listed as DQB1*03:02 also include DQB1*03:04, which is not indicated above. Infants who have an FDR with T1D were also 
eligible for TEDDY enrollment with various other HLA antigen genotypes but comprised <4% of the overall cohort and 
are not included in the current analysis. For general population infants, any DRB1*04 genotype of subtype DRB1*04:03 is 
ineligible, although this restriction was not placed on infants with an FDR with T1D.

SUPPLEMENTAL TABLE 3 �Frequencies of the Eligible HLA Antigen Genotypes by Clinical Center, and Percent of the Cohort at the Respective Center

Site Frequency of HLA Antigen Genotypes (%)

DR3/4 DR4/4 DR4/8 DR3/3 DR4/4b DR4/1 DR4/13 DR4/9 DR3/9 Total

Colorado 479 (34.9) 309 (22.5) 245 (17.8) 272 (19.8) 1 (0.1) 29 (2.1) 6 (0.4) 0 4 (0.3) 1371
Georgia 425 (44.0) 169 (17.5) 110 (11.4) 225 (23.3) 1 (0.1) 11 (1.1) 5 (0.5) 1 (0.1) 2 (0.2) 965
Washington 557 (40.4) 255 (18.5) 166 (12.1) 357 (25.9) 0 16 (1.2) 7 (0.5) 1 (0.1) 1 (0.1) 1377
Finland 602 (32.8) 289 (15.8) 572 (31.2) 269 (14.7) 0 46 (2.5) 11 (0.6) 12 (0.6) 9 (0.5) 1833
Germany 231 (38.8) 106 (17.8) 53 (8.9) 119 (20.0) 1 (0.2) 48 (8.0) 17 (2.8) 3 (0.5) 5 (0.8) 596
Sweden 1042 (41.3) 549 (21.7) 329 (13.0) 546 (21.6) 1 (0.0) 21 (0.8) 14 (0.5) 1 (0.0) 1 (0.0) 2525

Please see Supplemental Table 2 for a detailed description of these genotypes.
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SUPPLEMENTAL TABLE 4 �SNPs Known to be Associated Both With T1D and CD and That Are Concordant for Direction of Effect on Disease Risk

Locus Chr SNP Number Minor Allele Effect in Same 
Direction?

OR T1D OR CD Reference T1D Reference CD

RGS1 1q31 rs2816316 C Yes 0.89 0.72 Smyth et al10 Smyth et al10

SH2B3 12q24 rs3184504 A Yes 1.21 1.28 Smyth et al10 Smyth et al10

CTLA4 2q33 rs3087243 A Yes 0.82 0.85 Smyth et al10 Smyth et al10

Ueda 2003a Song 2013b

CCR3 3p21 rs6441961 T Yes 1.09 1.21 Smyth et al10 Smyth et al10

PTPN2 18p11 rs45450798 G Yes 1.28 1.18 Smyth et al10 Smyth et al10

Espino-Paisan 
2011c

Chr, chromosome; OR, odds ratio.
a Ueda H, Howson J, Esposito L, et al. Association of the T-cell regulatory gene CTLA4 with susceptibility to autoimmune disease. Nature. 2003;423(6939):506-511.
b Song GG, Kim J, Kim Y, et al. Association between CTLA-4 polymorphisms and susceptibility to celiac disease: a meta-analysis. Hum Immunol. 2013;74(9):1214-1218.
c Espino-Paisán L, De La Calle H, Fernández-Arquero M, et al. Study of polymorphisms in 4q27, 10p15, and 22q13 regions in autoantibodies stratified type 1 diabetes patients. Autoimmunity. 
2011;44(8):624-630.

SUPPLEMENTAL TABLE 5 �Excess Proportion of Co-occurrence of IAs and tTGAs by Country, Genotypes 
for HLA-DR-DQ, HLA-DPB1 and 5 SNPs, Sex, and FH of T1D or CD

Characteristic No. of Subjects Excess % (Wilson 
95% CI)Total Observed Expected

All 5891 90 70 0.34 (0.22–0.52)
Country US 2362 28 18 0.42 (0.23–0.78)

FIN 1394 22 19 0.22 (0.07–0.63)
GER 298 5 5 0.00a

SWE 1837 35 30 0.27 (0.12–0.64)
HLA-DR-DQ DR3/3 1259 23 19 0.32 (0.12–0.81)

DR3/4 2407 46 35 0.46 (0.26–0.82)
DR4/4 or 4/8 3602 63 43 0.56 (0.36–0.86)

Sex Male 3008 41 32 0.30 (0.16–0.57)
Female 2883 49 36 0.45 (0.26–0.77)

T1D FH No 5380 73 56 0.32 (0.20–0.51)
Yes 511 17 14 0.59(0.20–1.71)

CD FH No 5738 88 65 0.40 (0.27–0.60)
Yes 153 2 5 -1.96a

HLA-DPB1*01:01 
or HLA-
DPB1*02:01 
or HLA-
DPB1*03:01

No 2630 37 25 0.46 (0.26–0.80)
Yes 3261 53 45 0.25 (0.12–0.48)

HLA-DPB1*04:01 
or HLA-
DPB1*04:02

No 2530 44 34 0.40 (0.21–0.73)
Yes 3361 46 36 0.30 (0.16–0.55)

RGS1 
(rs2816316) 
or CTLA4 
(rs3087243)

0 1496 27 20 0.47 (0.23–0.96)
1 3283 49 38 0.34 (0.19–0.60)
2 1112 14 11 0.27 (0.09–0.79)

CCR3 
(rs6441961) 
or SH2B3 
(rs3184504) 
or PTPN2 
(rs45450798)

0 628 6 5 0.16 (0.03–0.90)
1 3527 48 39 0.26 (0.13–0.48)

≥2 1735 36 25 0.63 (0.35–1.13)

FIN, Finland; GER, Germany; SWE, Sweden; US, United States.
a 95% CI not calculable




