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The etiology of human leukocyte antigen (HLA)-associated organ-specific
autoimmune diseases is incomplete. In type 1 diabetes and celiac disease, the
strongest associations are with the HLA-DR3-DQ2 and DR4-DQ8
haplotypes, whereas the DQB1*06:02 allele has a strong negative association.
In contrast, narcolepsy, especially as recently triggered by the Pandemrix®

H1N1 vaccine (GlaxoKlineSmith (GSK), Brentford, Middlesex, UK), did not
seem to develop without at least one copy of the latter allele. The overall
hypothesis is that the role of these different HLA haplotypes, especially in
Finland and Sweden, is related to the immune response to infectious agents
that are common in these two populations. The high incidence of both type 1
diabetes and celiac disease in Scandinavia may be the result of the
HLA-DR3-DQ2 and DR4-DQ8 haplotypes, and the DQB1*06:02 allele are
common because they protected people from succumbing to common
infections. The timing of dissecting the autoimmune response is critical to
understand the possible role of environmental factors. First, an etiological
trigger may be a common virus infecting beta cells or with antigens inducing
beta-cell cross reactivity. Second, an autoimmune reaction may ensue, perhaps
in response to beta-cell apoptosis or autophagy, resulting in
autoantigen-specific T cells and autoantibodies. It is critical in at-risk children
to dissect the immune response prior to the appearance of autoantibodies in
order to identify cellular reactions in response to environmental factors that
are able to induce an HLA-associated immune reaction.
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HLA-DR-DQ is strongly associated with type 1
diabetes, celiac disease, and narcolepsy as examples
or organ-specific autoimmune diseases. The disease
association with HLA-DR-DQ, known since the 1970
(1), has remained the strongest genetic factor for type 1
diabetes and celiac disease risk (2–4). Recent genome-
wide association studies (GWAS) have discovered
genetic factors or genes that would explain either type 1
diabetes (5, 6) or celiac disease (7, 8). Human leukocyte
antigen (HLA) remains the greatest contributor to
disease risk. Although the mechanisms by which HLA
class II molecules are expressed and present antigen-
peptides, the specific role of HLA-DR3-DQ2 and
HLA-DR4-DQ8 and genetically linked molecules (9)
in triggering an autoimmune response needs to be
determined. Although 89% of type 1 diabetes patients
have any of these two haplotypes (10, 11) or both,

there has been a recent increase in patients with lower-
risk HLA genotypes (12, 13). Also, the mechanisms
by which HLA-DQA1*01:02-B1*06:02 was present in
all patients developing narcolepsy after Pandemrix®

vaccination is in conjunction with the recent 2009
H1N1 pandemic (14–16). In this brief review, on
the occasion of the 20th anniversary of DIPP (Type
1 Diabetes Prediction and Prevention Project), the
possible importance of environmental factors will be
discussed along with the possible role of HLA-DR-
DQ in population selection in response to common
infectious agents, known antigens and induction of
organ-specific autoimmunity, what we have learned
from DIPP, what we have learned from The
Environmental Determinants of Diabetes in the Young
(TEDDY) and islet autoimmunity, and what we have
learned from TEDDY celiac disease autoimmunity.
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Did HLA-DR-DQ class II heterodimers
contribute to population selection and risk
for autoimmunity?

It is well known that HLA class II heterodimers
bind specific peptides in its pocket that are related
to infectious agents. The Scandinavian Peninsula was
repopulated more than 9500 years ago after the last
in-land ice receded (Fig. 1). The survival of these
early inhabitants would be dependent on how their
HLA-DR-DQ haplotypes were able to present viral
and bacterial peptides to mount an immune response
for survival. Heritability of susceptibility to several
infectious diseases is an important aspect of the
functional importance of HLA class II molecules
(17). Hence, a lower risk of thoracic tuberculosis was
found in carriers of DR3-DQ2.5 and DR7-DQ2.1.
Carriers of DR8-DQ4 were at higher risk for thoracic
tuberculosis (18). Tuberculosis is but one example of a
well-documented infection that plagued people. DR3
as well as DR7 individuals are poor responders to
measles. During thousands of years in the absence of
antibiotics and vaccination, people survived on their
own ability to mount an effective immune response to
common virus infections, particularly those affecting
children. Therefore, intuitively, the better the HLA
class II presentation of viral peptides to T Cell Receptor
(TCR) and subsequent T cell and antibody reactions
to measles, rubella, rubeola, mumps etc., the greater
the chance for survival. In addition, mothers with
high titer antibodies to virus infections were more
likely to protect their offspring from deadly viral
infections during the first year of life, something
that may have changed after the second World War
(19). It may be speculated that the high haplotype
frequencies of DR3-DQ2, DR4-DQ8, and DQ6.2 in
the Finnish and Swedish populations were selected
during evolution because they represented survival to
common infectious diseases that plagued the early
inhabitants of Scandinavia. HLA-DR-DQ types with
poor protection, i.e., responding with low antibody
titers, would die out. The HLA-DR3-DQ2, DR4-DQ8
haplotypes common in the Finnish and Swedish may be
because of selection by survival to particular infectious
agents. This needs to be taken into account when
analyzing the possible role of HLA-DR-DQ in immune
responses to infectious agents that may induce type 1
diabetes, celiac disease, or narcolepsy.

The study of HLA in type 1 diabetes and celiac
disease may in part be complicated by the fact that
the majority of studies have only included subjects
with the disease. However, recent investigations in
the DIPP (20) and TEDDY (21) studies indicate that
the association with disease may be secondary to the
association with the autoantibodies that precede the
clinical onset. Hence, DR3-DQ2 is associated with the

Fig. 1. Migration into the Scandinavia Peninsula after the in-land
receded some 9500 BC. Gatherers and hunters migrated into the
peninsula, being selected for survival based on their HLA-DR-DQ
in response to common infectious agents affecting humans including
childhood infectious diseases. In both Finland and Sweden, the most
common haplotypes are HLA DR3-DQ2, DR4-DQ8, and DR15-
DQ6.2, which may be related to survival to environmental factors
such as childhood virus diseases as well as tuberculosis.

risk for autoantibodies against GAD65 (GADA) and
DR4-DQ8 with autoantibodies against insulin (IAA).
Such associations between HLA and autoantibodies
have previously also been observed at the time of
clinical diagnosis (22, 23), but the increased risk of
HLA-DR-DQ for islet autoantibodies as well as tissue
transglutaminase autoantibodies (tTGA) (24) suggest
that the importance of these class II molecules may
rest with the ability to present autoantigen peptides
to CD4+ T cells in order to induce an autoimmune
response. The importance of the TEDDY-pilot studies
DIPP (25), BABYDIAB (26), DAISY (27), and DiPiS
(28) and the TEDDY study itself (29) underscore the
importance to follow children at increased genetic risk
from birth to disclose the time of seroconversion. As it
is believed that autoantigen peptides are not presented
spontaneously to induce autoimmunity, it is speculated
that a trigger such as an environmental agent is needed.
The etiological factor may be an environmental agent,
but the contribution of other phenomena, such as
beta-cell apoptosis or autophagy, cannot be excluded.
So far, there is no evidence in type 1 diabetes that
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Fig. 2. Time line of the H1N1 pandemic in April 2009, the Swedish mass vaccination campaign (also taking place in Finland) with Pandemrix®,
and the detection of patients with narcolepsy.

iatrogenic effects would explain the 2–5% increase
in incidence rate that has been reported in Finland
shortly after the second World War and in Sweden
through registries established in the early 1980s (30,
31). A number of environmental exposures such as
dietary factors, enteroviruses, and toxins as well as
psychosocial factors have been considered throughout
the years (32). In celiac disease, Sweden experienced a
marked increased incidence rate in the 1980s after the
recommendations on gluten intake were changed (33).
The epidemic was thought in part to be because of a
change among three factors within the area of infant
feeding: amount of gluten given, age at introduction of
gluten, and whether breastfeeding was ongoing or not
when gluten was introduced. A more recent iatrogenic
disease was the sudden increase in young children with
narcolepsy following the vaccination in Finland and
Sweden with Pandemrix, a H1N1 (swine flu) vaccine.

What did vaccine-induced narcolepsy tell us
about organ-specific autoimmunity?

In October 2009–March 2010, a mass vaccination
campaign with Pandemrix took place in Sweden
(Fig. 2). The mass vaccination may mimic HLA-
dependent association with an infectious disease. It
is noted that it may not only be the H1N1 proteins in
the vaccine but also the combination, for example, with
the adjuvant shark liver oil (squalene) that was used.
The outcome of the mass vaccination was a marked
increase in young patients with narcolepsy both in
Finland (14) and Sweden (15, 34). The two countries
used the same vaccine, and all investigators found
that the patients with Pandemrix-induced narcolepsy
were positive for HLA-DQB1*06:02. Heterozygocity
was sufficient (16). Hence, it is a rare occasion to
study the induction of an autoimmune disease directed
against the hypocretin neurons in the hypothalamus
that was induced by a vaccine of known composition,
inducing disease only in HLA DQB1*06:02 subjects.
Although the autoantigen is yet to be identified, it
was found that A/H1N1 antibody levels were higher
among the <13 years old compared with patients who
were older than 30 years (16). Being HLA-DQB1*06:02
positive was associated with higher A/H1N1 antibody

levels in both patients and controls (16). Further
studies are needed, particularly to clearly identify the
autoantigen involved as well as which virus protein
(hemagglutinin, nucleoprotein, or NS1) might have
been the primary trigger and the possible importance
of a necessary second hit such as the adjuvant to trigger
the DQB1*06:02-dependent autoimmunity.

What have we learned from 20 years
with DIPP?

The DIPP study initiated in 1994 used novel
technologies for rapid and reliable HLA typing of
cord blood samples (35, 36). As the frequency of
newly diagnosed children was primarily in families
without type 1 diabetes, the newborn screening was
focused on all children born whether or not there was a
family member with type 1 diabetes (25). The two-step
screening approach enhanced the sensitivity for type 1
diabetes risk in Finnish newborns up to 85.4%. In the
children of the general population, 24% were identified
for prospective follow-up, and it was expected that
2.6% would be diagnosed with type 1 diabetes before
the age of 15 (25). The proportion of specific high-risk
DR3-DQ2/DR4-DQ8; DR4-DQ8/DR4-DQ8, DR3-
DQ2/DR2-DQ2, and DR8-DQ4/DR4-DQ8 genotypes
in Finland represents about 5.5% of all newborn, and
these genotypes would be found in 45–50% of the
children who are diagnosed with type 1 diabetes by
15 years of age (37). The specific aim in DIPP was to
test whether intranasally administered insulin would
reduce progression to clinical onset (38). However,
the data showed that in children with HLA-conferred
susceptibility to diabetes, administration of nasal
insulin, started soon after detection of autoantibodies,
could not prevent or delay type 1 diabetes (39).
The DIPP study has, on the other hand, generated
a wealth of information on the pathogenesis, i.e.,
the progression of disease to clinical diagnosis once
one or several autoantibodies have formed. This
data include studies on the loss of beta-cell function
in islet autoantibody-positive infants (40, 41). More
interestingly for the present discussion was the analysis
of which autoantibody was first detected during follow-
up from 3 months of age and onwards (20). Three
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Fig. 3. Appearance of the first and second islet autoantibody in human leukocyte antigen (HLA)-high-risk children followed quarterly from
3 months of age. Note that the y-axis of the different panels is widely different. The patterns indicate that insulin antibodies (IAA) is the first
autoantibody at young age, that GADA is appearing later, and that IA-2 (IA-2A) is less often seen as the first islet autoantibody. GAD65
autoantibodies (GADA) and IA-2A are commonly seen as the second autoantibody. Reproduced with permission from ref. (20).

patterns emerged (Fig. 3). The first was the early
appearance of insulin antibodies (IAA) during the first
years of life. The second was that GADA came later
as the fist islet autoantibody. The third was that IA-
2 (IA-2A) was less often the first islet autoantibody.
These data clearly indicate that there may be two
different triggers of islet autoimmunity. One pattern
was the autoimmune response to insulin resulting in
IAA during the first years of life. The second was
GADA appearing later in life but with a tendency
to sustain. These data suggest that much research on
type 1 diabetes has followed the street light effect (42).
Research has been looking were the light is, i.e., at the
time of diagnosis, and thereby missing (i) the etiology
prior to seroconversion and (ii) the pathogenesis once

islet autoimmunity has been established through the
first persistent autoantibody, to be followed by a
second, third, and fourth autoantibody heralding the
clinical onset of disease (42).

What have we learned from TEDDY so far?

While the DIPP study was launched in 1994, the
TEDDY study began screening nearly 440 000 new-
borns in 2004 (37, 43). The newborn screening
was successful, including more than 8600 children
3–4.5 months at their first visit. The strength of the
study is that the inclusion criteria only encompassed
four genotypes (additional genotypes were included
in case the child had a first degree relative with the
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Fig. 4. Time of seroconversion in the TEDDY study. Number of
subjects is shown in relation to the age of the child in months. Data
are obtained from ref. (21).

disease, only 11% in TEDDY): DR3-DQ2/DR4-DQ8;
DR4-DQ8/DR4-DQ8, DR3-DQ2/DR2-DQ2, and
DR8-DQ4/DR4-DQ8. At the time of the DIPP’s 20th
anniversary, the TEDDY children were 4–10 years of
age, and major observations have already been made
(Figs. 4 and 5). Autoantibodies against insulin (IAA),
GADA and IA-2A are measured in two different ref-
erence laboratories, and seroconversion is defined by
persistence at two different visits and a positive score
in both laboratories (44). The data in Fig 4 illustrate
that the time of seroconversion in this group of children
from the USA, Sweden, Finland, and Germany already
occurred to the greatest extent at 1–3 years of age (21).
However, a major finding was that the incidence rate
of the first islet autoantibody differed by age and HLA
genotype (21). Hence, the trigger for IAA occurred
early in life and primarily in children positive for DR4-
DQ8. It is noted that the incidence rate for IAA tapers
off with increasing age as if children acquire protec-
tion against a hypothetical trigger with increasing age.
GADA as the first islet autoantibody follows a different
pattern. This islet autoantibody appeared later. There
is no decline in GADA incidence rate; rather, it seems to
remain stable through the years of follow-up. GADA
as the first islet autoantibody seems to primarily affect
children with the DR3-DQ2 haplotype.

The major lessons to be learned from TEDDY are
analyses of samples and questionnaire information
obtained prior to seroconversion. The observation
that IAA only and GADA only may be related
to two different HLA risk haplotypes will make it
necessary to reconsider the original hypothesis of one
environmental trigger resulting in islet autoimmunity.
Instead, two different etiological phenomena will
have to be entertained, one for HLA DR3-
DQ8 and another for HLA-DR4-DQ8. Interestingly
enough, when parents were asked if they had given
their child probiotics, it turned out that probiotic
supplementation at the age of 0–27 days was associated
with a decreased risk of islet autoimmunity when

compared with probiotic supplementation after 27 days
or no probiotic supplementation (45). Children with
the DR3/4-DQ2/8 genotype had the strongest response
to early probiotics (45). These data support the notion
that a number of environmental determinants may
affect the risk for a first islet autoantibody.

What have we learned from studying celiac
disease in TEDDY?

Using the HLA DR3-DQ2/DR3-DQ2 and the DR3-
DQ2/DR4-DQ8 genotypes as inclusion criteria in
TEDDY in children from the general population
opened the study for the two highest genetic risk groups
of celiac disease. In TEDDY, autoantibodies to tTGA
were used to screen all TEDDY children at 4 years of
age. The fact that more TEDDY children had tTGA
than islet autoantibodies and more children in fact were
diagnosed with celiac disease allowed the investigators
to analyze tTGA in all samples obtained prior to the
fourth year sample in order to identify the visit where
seroconversion was found to have taken place (46).
The data demonstrated that TEDDY children with the
HLA DR3-DQ2, especially homozygotes, were found
to be at high risk for tTGA and celiac disease. There
were 2% in the DQ4/8 genotype, 9% in DQ8/8, and 11%
in DQ2/8 but 26% in the DQ2/2 children. The higher
risk in Sweden than in other countries emphasizes
the importance of identifying environmental factors
associated with celiac disease (46). Such environmental
factors may include, but are not limited to, gluten
and may include virus infections as well. For example,
the amount of gluten consumed until 2 years of age
increased the risk of celiac disease at least twofold
in TEDDY DR3-DQ2 children (47). The timing of
the first introduction of gluten was not a risk factor
for tTGA (48). The TEDDY data (46) suggest that
a total of 300 TEDDY children are on a gluten-free
diet. This fact will allow the TEDDY investigators to
ask if the risk for a first islet autoantibody is affected.
There are about 20 children with islet autoantibodies
also on a gluten-free diet. What will be their risk for
type 1 diabetes? Hence, studying tTGA and celiac
disease in TEDDY is a unique opportunity to disclose
which environmental factors are involved in triggering
celiac disease autoimmunity. It will also be possible
to determine the natural history of progression from
tTGA induction until the diagnosis of celiac disease.

Conclusion

The appearance of islet autoantibodies as biomarkers
of type 1 diabetes and tTGA of celiac disease has
made it possible to restructure the research design of
the disease etiology and pathogenesis. The DIPP and
the TEDDY studies have identified a large number of
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Fig. 5. Incidence of insulin autoantibodies (IAA) (filled squares) and GAD65 autoantibodies (GADA) (filled circles) in TEDDY children of
four different genotypes as indicated. Note that children with DR4-DQ8 are predominantly IAA and children with DR3-DQ2 predominantly
GADA positive. IAA appeared early and GADA later. Children with both IAA and GADA as the first autoantibody are also shown (filled
triangles). Reproduced with permission from ref. (21).

children with the DR4-DQ8 haplotypes who tended
to develop IAA during the first 2–3 years of life.
In children with the DR3-DQ2 haplotype, GADA
was the first autoantibody, but they tended to appear
later and showed indications of a stable incidence
rate while that of IAA decreased with increasing age.
tTGA autoantibodies also developed earlier, and the
overlap between the markers and their associated
diseases was limited. Both DIPP and TEDDY have
large sample repositories, and it should prove useful
to analyze samples prior to seroconversion to detect
environmental factors that are able to trigger either
islet or celiac disease autoimmunity. It is a testable
hypothesis that a trigger may not be alone. A
combination of two triggers, such as a large amount
of gluten in conjunction with a virus infection, may be
the trigger of an immune response to tTGA.
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