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Malawi polyomavirus (MWPyV) is a recently identified human polyomavirus. Serology for MWPyV VP1 indicates that infection
frequently occurs in childhood and reaches a prevalence of 75% in adults. The MWPyV small T antigen (ST) binds protein phos-
phatase 2A (PP2A), and the large T antigen (LT) binds pRb, p107, p130, and p53. However, the MWPyV LT was less stable than
the simian virus 40 (SV40) LT and was unable to promote the growth of normal cells. This report confirms that MWPyV is a
widespread human virus expressing T antigens with low transforming potential.

Polyomaviruses are small, nonenveloped, circular double-
stranded DNA viruses that maintain persistent lifelong infections

in humans and animals (1). Human polyomaviruses (HPyV), includ-
ing JC polyomavirus (JCPyV) and BK polyomavirus (BKPyV), can
cause significant disease, primarily in immunocompromised in-
dividuals, with increased virus levels contributing to the progres-
sion of a disease state (1, 2). Since 2007, the identification of 11
new HPyV has brought renewed attention to this family of DNA
tumor viruses and their potential role in human disease. For exam-
ple, trichodysplasia spinulosa-associated polyomavirus (TSPyV) was
isolated from severely immunocompromised patients with
trichodysplasia spinulosa (3). The Merkel cell polyomavirus
(MCPyV) was found to be clonally integrated into a large percent-
age of Merkel cell carcinomas (MCC), a cancer with risk factors
that include advanced age, prolonged UV exposure, and immu-
nosuppression due to HIV-1/AIDS, hematologic malignancy, or
solid-organ transplantation (4, 5). However, many new HPyV
have not yet been associated with disease. For example, although
WU polyomavirus (WUPyV) (6) and KI polyomavirus (KIPyV)
(7) were isolated from nasopharyngeal secretions of children, they
do not appear to contribute to pneumonia or other pulmonary
disorders. HPyV6 (8) and HPyV7 (8) were found to be chronically
shed from the skin; HPyV7 was recently associated with a pruritic
rash in certain immunocompromised individuals (9). HPyV9
(10) was found in blood and urine and has sequence similarity to
the B-lymphotropic polyomavirus previously isolated from Afri-
can green monkey cells (11).

Malawi polyomavirus (MWPyV) (12), Saint Louis polyomavi-
rus (STLPyV) (13), HPyV12 (14), and New Jersey polyomavirus
(NJPyV) (15) are the most recently described HPyV. HPyV12 was
isolated from resected human liver tissue, while NJPyV was found
in endothelial cells of a pancreatic transplant patient. HPyV10
(16) and Mexico polyomavirus (MXPyV) (17) represent different
isolates of MWPyV, while STLPyV, HPyV12, and NJPyV are ge-
netically distinct HPyV species. MWPyV/MXPyV and STLPyV
were isolated from human stool samples in children presenting
with diarrhea. MWPyV and HPyV10 were also isolated from a
wart in a patient with WHIM (warts, hypogammaglobulinemia, in-

fections, and myelokathexis) syndrome. WHIM syndrome increases
patient susceptibility to human papillomavirus (HPV) infection (18).
It is possible that MWPyV/HPyV10 contributed to the development
of the excised warts and that WHIM syndrome makes patients sus-
ceptible to infection with and disease caused by MWPyV and other
HPyV, although this association has not been demonstrated.

We independently identified an HPyV genome, closely related
to those of MWPyV, HPyV10, and MXPyV, from two serial stool
samples from a child at 9 and 11 months of age living in Denver,
CO, USA. These samples were part of the collections for the En-
vironmental Determinants of Diabetes in the Young (TEDDY)
study (19), although the child had no signs of diabetes at the time
of sample collection. Total DNA was isolated from cleared stool
samples using a QIAamp DNA Blood minikit (catalog no. 51104;
Qiagen) following the manufacturer’s suggested protocol. The re-
sulting total DNA was subjected to whole-genome amplification
(WGA) by the use of multiple displacement amplification (MDA)
and a REPLI-g minikit (Qiagen) (20). WGA DNA was fragmented
by sonication and then subjected to massively parallel sequencing
by the use of a Illumina HiSeq 2000 sequencer as previously re-
ported (21). DNA sequences matching human genome sequences
were subtracted using PathSeq (22), and the remaining unmapped
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reads were de novo assembled into long contiguous sequences
(contigs) using Inchworm software (23). The accuracy of the viral
genome assembly and DNA base accuracy were validated by PCR
amplification of two DNA fragments, a 2,954-bp DNA fragment
and a 2,349-bp DNA fragment, from the original batches of total
DNA without WGA, followed by Sanger sequencing. After com-
bining contigs from the two samples, we were able to assemble a
4,939-bp-long circular virus genome. This strain of MWPyV is
94.9% identical at the nucleotide level to the previously reported
strains of MWPyV and 99.7% identical to HPyV10 and MXPyV.
In contrast, STLPyV, HPyV12, and NJPyV are quite divergent
from this group, with less than 81% similarity at the nucleotide
level, supporting their designation as distinct HPyV species (24).

Serological studies have indicated that JCPyV and BKPyV in-
fections, as well as KIPyV, WUPyV, and MCPyV infections, often
occur during childhood (25). To determine the prevalence of
MWPyV infection, the predicted MWPyV VP1 gene sequence was
modified for optimal expression in Escherichia coli (GenScript)
and used to study the serological prevalence of MWPyV infection
in healthy individuals. We performed serological analysis using
glutathione S-transferase (GST)-conjugated MWPyV-VP1 in a
capsomere-based enzyme-linked immunosorbent assay (ELISA)

as previously described (25). Serum samples from 500 individuals
(a subset of a larger Colorado Multiple Institutional Review
Board-approved collection) (25) were tested in triplicate, and val-
ues corresponding to their absorbance at 450 nm were plotted in
ascending order to determine an inflection point and a cutoff
value (Fig. 1A). By the use of this cutoff value, MWPyV-VP1 se-
roreactivity was detected in up to 75.8% of patient sample groups,
with an age-related increase in seropositivity (Fig. 1B). Similar
findings for MWPyV were recently reported using a virus-like
particle-based ELISA, with seroprevalence reaching 42% in an
adult population (26). The moderately high levels of seropreva-
lence in children from age 3 to age 21 suggest that primary infec-
tion with MWPyV occurs in childhood, and the increasing fre-
quency of elevated antibody titers that occurs with age is
consistent with persistent lifelong infections.

Virus protein interactions can act as surrogates for human ge-
netic variations, inducing disease states by influencing local and
global properties of cellular networks (27). Classical studies have
demonstrated that the model polyomavirus simian virus 40
(SV40) large T antigen (LT) promotes cellular proliferation at
least in part by binding to pRb and p53 (28, 29). In addition, the
SV40 small T antigen (ST) plays a critical role in cellular transfor-
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FIG 1 Age-specific seroprevalence determined in a Denver, CO, USA, study population (n � 500) for MWPyV. (A) Determination of inflection points for
MWPyV VP1 antigens assayed using the VP1-GST ELISA. Two best-fit functions, one sixth-order (A) and one third-order (B) polynomial, were derived from the
data using Microsoft Excel. The inflection points were calculated by setting the second derivative of the corresponding function to zero. The average of the two
inflection point (Average IP) values (average � 0.677) was the final assigned cutoff value. All absorbance values above that were considered to represent
seropositivity. (B) MWPyV age-specific seroprevalence from 500 serum samples tested in triplicate, indicating an age-related increase in seropositivity.
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mation by binding to the A and C subunits of protein phosphatase
2A (PP2A), thereby affecting multiple signaling pathways (30–
33). A recent study indicated that LT from WUPyV, HPyV6, and
HPyV7 could coprecipitate p53 and pRb (27).

To determine whether MWPyV LT could bind to p53 and pRb
and whether MWPyV ST could bind to PP2A, MWPyV LT and ST
open reading frame (ORF) cDNAs were generated by PCR-based
Gateway cloning (Invitrogen) into destination vector MSCV-C-
term-Flag-HA-IRES-Puro (CTAP) as previously described using
the primer pairs listed in Table 1 (27, 34). The 2,954-bp viral DNA
fragment, which included the large T antigen (LT) and small T
antigen (ST) genes, was used to clone the T antigen cDNA con-
structs. The full-length MWPyV LT cDNA was generated by over-
lap extension PCR (27) using the individual LT exon PCR prod-
ucts. Recombinant retroviruses were generated in 293T cells and
transduced into U-2OS human osteosarcoma cells followed by
selection with puromycin (Sigma) (27) (2 �g/ml). Cells were then
transfected with a control enhanced green fluorescent protein
(EGFP)-expressing vector or V5-tagged pRb, p53, or PP2A-A�
(PPP2R1A) constructs using Lipofectamine 2000 (Invitrogen).
After 48 h, cells were treated with 10 �M MG132 (Millipore) for 8
h before harvesting. Cell lysates were obtained using lysis buffer
containing 150 mM NaCl, 50 mM Tris-HCl, 1 mM EDTA, 0.5%
NP-40, 10% glycerol, and protease and phosphatase inhibitor
cocktail sets (Calbiochem). Reciprocal immunoprecipitations
from cell lysates were performed with anti-hemagglutinin (anti-
HA) beads (Roche) or anti-V5 beads (Bethyl) as previously de-
scribed (27). Beads were washed with lysis buffer, boiled in SDS
sample buffer (Boston BioProducts), resolved by SDS-PAGE (Cri-
terion TGX precast gels; Bio-Rad), and immunoblotted with an-
tibodies to HA (C29F4; Cell Signaling), V5 (Invitrogen), and vin-
culin (H-10; Santa Cruz).

CTAP-MWPyV LT was able to coimmunoprecipitate both V5-
tagged p53 and pRb, while V5-tagged p53 and pRb could pull
down CTAP-MWPyV LT (Fig. 2A). An immunoprecipitation of
CTAP-MWPyV ST revealed coimmunoprecipitation of the V5-
tagged PP2A-A� subunit, and, conversely, an immunoprecipita-
tion of V5-PP2A-A� coprecipitated CTAP-MWPyV ST (Fig. 2A).
To determine if MWPyV LT could bind to other Rb-family pro-
teins, we performed a similar coimmunoprecipitation experiment
by transfecting U-2OS stably expressing CTAP-GFP, CTAP-
MWPyV LT, and CTAP-MWPyV LT.E109K, which contains a
mutated LXCXE (LXCXK) motif (1), with V5-tagged pRb, p107,
p130, or a control EGFP-expressing vector. The E109K mutation
was introduced into LT using the primer pairs listed in Table 1 and
a QuikChange XL II site-directed mutagenesis kit (Agilent). An
immunoprecipitation of CTAP-MWPyV LT, but not CTAP-
MWPyV LT.E109K or NTAP-GFP, revealed weak binding of V5-

tagged pRb, p107, and p130, and, conversely, immunoprecipita-
tion of V5-tagged pRb, p107, and p130 was able to coprecipitate
CTAP-MWPyV LT but not CTAP-MWPyV LT.E109K or NTAP-
GFP (Fig. 2B). Actin-specific antibody (D6A8; Cell Signaling) was
used as a loading control. These results confirm that MWPyV T
antigens are able to bind specifically to cellular tumor suppressors
in a manner similar to that seen with T antigens from SV40, al-
though not as efficiently (1, 35).

Given the ability of MWPyV LT to bind to p53 and Rb-family
proteins, we proceeded to test if it could regulate cell cycle-depen-
dent gene expression in a fashion similar to that seen with SV40
LT. To determine the relative levels of induction of several E2F-
target genes, U-2OS cells stably expressing CTAP-GFP, CTAP-
MWPyV LT, or NTAP-SV40 LT were synchronized in late G1/S
phase using L-mimosine, released with fresh media, and harvested
every 3 h for 12 h as previously described (36). Although cells
expressing SV40 LT had increased levels of cyclin E and B-Myb
relative to cells expressing GFP, cells with MWPyV LT did not
show increased levels of cyclin E, cyclin A, and B-Myb compared to
cells expressing GFP (data not shown). pRb levels were also found to
have remained unchanged in the three cell lines (data not shown).

We observed that the levels of MWPyV LT appeared lower
than those of SV40 LT in the stably transduced U-2OS cells. We
sought to determine if MWPyV LT was being turned over in cells
at a rate that was similar to or different from the rate seen with
SV40 LT. U-2OS cells stably expressing CTAP-GFP, CTAP-
MWPyV LT, or NTAP-SV40 LT were treated with cycloheximide
(Sigma) (50 �g/ml), MG-132 (10 �M), or dimethyl sulfoxide
(DMSO). Cells were harvested every 3 h for 12 h, lysed, and im-
munoblotted with HA and p53 (FL-293; Santa Cruz) antibodies
(Fig. 3A). While NTAP-SV40 LT was quite stable under condi-
tions of cycloheximide treatment, CTAP-MWPyV LT levels
quickly diminished within 6 h. In cells expressing SV40 LT, p53
levels were increased, with a reduced turnover rate (37). We found
that MWPyV LT failed to stabilize p53 compared to SV40 LT
results following cycloheximide treatment (Fig. 3A).

Expression of T antigens typically promotes cellular prolifera-
tion (38). To determine if MWPyV LT can promote cell growth,
IMR-90 cells stably expressing NTAP-tagged MWPyV LT, SV40
LT, MCPyV LT, or vector, between passage 9 and passage 12, were
seeded in triplicate in 24-well plates (day 0; 5 � 103 cells per well)
and cultured in Dulbecco’s modified Eagle medium (DMEM)
(Cellgro) supplemented with 1% penicillin-streptomycin (Pen
Strep; Gibco), 1% GlutaMAX (Gibco), and 1% nonessential
amino acids (Gibco) and either 15% fetal bovine serum (FBS)
(Atlanta Biologicals) (Fig. 3B) or 1% FBS (Fig. 3C). Cell density
was measured by crystal violet assay at intervals after plating as
previously described (27). Although the presence of SV40 LT led

TABLE 1 PCR primers for generating Gateway-compatible MWPyV ST and LT constructs and MWPyV LT LxCxE mutant

Construct Forward primer Reverse primer

MWPyV ST GGGGACAAGTTTGTACAAAAAAGCAGGCATGATAGA
GTTCTTTCTAGAGAT

GGGGACCACTTTGTACAAGAAAGCTGGGTCGGAGTCCC
ATAAGTGGGA

MWPyV-LT-exon 1 GGGGACAAGTTTGTACAAAAAAGCAGGCATGATAGA
GTTCTTTCTAGAGAT

CCCATAAGTGGGATTTCCCTTTGCAGGAAAATAAACTT

MWPyV-LT-exon 2 GGAAATCCCACTTATGGG GGGGACCACTTTGTACAAGAAAGCTGGGTCTTGTGAAT
TAATTCCAGAGTCT

MWPyV-LT-E109K GGATGGGATGAAGATTTAAGTTGTAATAAATCTTTTGC
TCCCAGTGAT

ATCACTGGGAGCAAAAGATTTATTACAACTTAAATCTT
CATCCCATCC
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to an increase in the growth rate relative to the rate seen with the
vector control cells, the presence of MWPyV LT led to a slight
decrease in the growth rate of IMR-90 cells under both conditions
(27, 32). It has been recently reported that MCPyV LT may have
growth-inhibitory effects in human fibroblasts (39–41). We ob-
served similar results and found that MWPyV LT-expressing cells
grew only slightly faster than cells containing MCPyV LT but less well
than the control cells cultured under identical conditions. These re-
sults indicate that MWPyV LT lacks transforming potential in vitro.

We have isolated a new strain of MWPyV and provided sero-
logical evidence that it is a virus infecting humans that is prevalent

across a broad age range. The initial reports of MWPyV and the
closely related MXPyV contained cautionary notes regarding their
potential as environmental contaminants in stool rather than as
human pathogens (12, 17). However, repeated isolation of iden-
tical viruses from temporally distinct stool samples, both in the
original study (12) and in this study, suggests chronic infection
with MWPyV. Furthermore, MWPyV/HPyV10 was found in high
abundance in samples from a surgically excised wart (16), suggest-
ing that human cells can support infection. Serological evidence
for specific antibodies to HPyV VP1 provides additional strong
support for its designation as a human polyomavirus.
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FIG 2 MWPyV T antigens bind to human tumor suppressors. (A) U-2OS cells stably expressing CTAP-GFP (CT-GFP), NTAP-SV40 LT (NT-SV40 LT),
CT-MWPyV LT, CT-SV40 ST, and CT-MWPyV ST were transfected with the indicated V5-tagged constructs of PP2A-A�, pRb, and p53 or with a control
EGFP-expressing vector. After an 8-h treatment with 10 �M MG-132, cells were lysed and immunoprecipitated with either HA antibody-conjugated beads (IP:
HA) or V5 antibody-conjugated beads (IP: V5). Blotting with HA (IB: HA) or V5 (IB: V5) was performed to detect IP of the CTAP/NTAP constructs or
coimmunoprecipitation of the PP2A-A�, pRb, and p53 constructs, respectively. Vinculin-specific antibody was used as a loading control. (B) U-2OS cells stably
expressing CT-GFP, CT-MWPyV LT, and CT-MWPyV LT.E109K were transfected with the indicated V5-tagged constructs of pRb, p107, and p130 or with a
control EGFP-expressing vector. After MG-132 treatment, cells were lysed and immunoprecipitated as described for panel A. Actin-specific antibody was used
as a loading control.
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We have determined that MWPyV LT cocomplexes with Rb-
family proteins and p53 and that MWPyV ST cocomplexes with
PP2A-A�. Despite the ability of MWPyV T antigens to bind to
known tumor suppressors, MWPyV T antigens did not promote
cellular proliferation compared to control cell results. We found
that MWPyV LT is rapidly turned over, which may explain its
inability to promote cell growth. It remains to be determined
whether MWPyV can contribute to human disease.

Nucleotide sequence accession number. Sequence data for
the 4,939-bp-long circular virus genome determined in this work
was deposited in GenBank under accession no. KC690147.
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for 14 days. Cell density was determined by crystal violet staining followed by optical density measurement at 590 nm.
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