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Abstract

Aims The Environmental Determinants of Diabetes in the Young planned
biomarker discovery studies on longitudinal samples for persistent confirmed
islet cell autoantibodies and type 1 diabetes using dietary biomarkers,
metabolomics, microbiome/viral metagenomics and gene expression.

Methods This article describes the details of planning The Environmental
Determinants of Diabetes in the Young biomarker discovery studies using a
nested case–control design that was chosen as an alternative to the full
cohort analysis. In the frame of a nested case–control design, it guides
the choice of matching factors, selection of controls, preparation of
external quality control samples and reduction of batch effects along with
proper sample allocation.

Results and conclusion Our design is to reduce potential bias and retain
study power while reducing the costs by limiting the numbers of samples
requiring laboratory analyses. It also covers two primary end points (the occur-
rence of diabetes-related autoantibodies and the diagnosis of type 1 diabetes).
The resulting list of case–control matched samples for each laboratory was
augmented with external quality control samples. Copyright © 2013 John Wiley
& Sons, Ltd.

Keywords batch effects; biomarker discovery; nested case–control design;
TEDDY; type 1 diabetes

The Environmental Determinants of Diabetes in the Young (TEDDY) is
designed as a prospective cohort study of 8677 children enrolled before
4.5 months of age and followed for 15 years to identify genetic and environ-
mental triggers of type 1 diabetes (T1D). The TEDDY cohort consists of chil-
dren identified to be of increased genetic risk who either had a parent or
sibling with T1D (first-degree relative) or not (general population). TEDDY
planned analyses include the comparison of the natural history and biomarkers
of those children developing T1D to those who did not. The large cohort size
and the high costs of these technologies make the full cohort analysis expen-
sive and inefficient.

Epidemiological designs, such as a nested case–control and a case cohort,
are available to improve efficiency in a large cohort study, while providing a
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similar result that the full cohort analysis would have
produced. The strengths and weaknesses of those avail-
able designs have been compared in great detail [1–3].
For biomarker studies, a nested case–control design has
more advantages than others, stemming from the ability
of matching cases and controls for potentially
confounding variables [4–7], as well as the ability of
saving more resources because information on time-
dependent exposures in controls does not require
samples or data to be collected beyond the time of fol-
low-up of the case [8]. However, a nested case–control
design requires careful planning to avoid bias and loss
of generality while trying to improve efficiency [4]. Fail-
ure to select controls as nested in each risk set from the
full cohort can produce biassed results [9,10]. Further-
more, a nested case–control design shares the general
concerns in considering special sampling techniques,
such as the choice of matching factors.

In this article, we present the details of planning the
TEDDY biomarker discovery studies using a nested
case–control design that was chosen as an alternative
to the full cohort analysis. Our design reduces poten-
tial bias and retains study power while reducing the
costs by limiting the numbers of samples requiring lab-
oratory analyses. It also covers two primary end points
(the occurrence of diabetes-related autoantibodies and
the diagnosis of T1D). The resulting list of case–
control matched samples for each laboratory was aug-
mented with external quality control (QC) samples
prepared by the data coordinating centre (DCC) QC
laboratory. The external QC samples were masked so
that the laboratories were unaware of whether the
samples came from cases or controls. We first describe
the TEDDY cohort and the application of a nested
case–control design and then the steps taken to select
controls. The definition of cases and controls are de-
tailed, and the preparation of external QC samples is
also described.

Materials and methods

Study population

The Environmental Determinants of Diabetes in the
Young enrolled children younger than 4.5 months of
age from December 2004 to July 2010 through new-
born screening for high-risk HLA-DR-DQ genotypes at
six centres: three in the United States at the Pacific
Northwest Diabetes Research Institute, Seattle, Wash-
ington, the Barbara Davis Center, Denver, Colorado; a
combined Georgia/Florida site at the Medical College
of Georgia, Augusta, Georgia and the University of

Florida, Gainesville, Florida, and three in Europe at
University of Turku, (Turku, Oulu and Tampere,
Finland); Lund University, Malmo, Sweden and the
Diabetes Research Institute, Munich, Germany. De-
tailed study design and methods have been previously
published [11,12]. Written informed consents were
obtained for all study participants from a parent or pri-
mary caretaker, separately, for genetic screening and
participation in prospective follow-up. The study was
approved by local institutional review boards and is
monitored by external evaluation committee formed
by the National Institutes of Health.

The first primary endpoint in TEDDY is the appearance
of persistent confirmed islet autoimmunity (IA). Persis-
tent confirmed IA is defined as the presence of one
confirmed autoantibody (GAD65A, IA-2A or IAA) on
two or more consecutive samples. IAs are measured in
two laboratories (Barbara Davis Center, Aurora, Colo-
rado, and the University of Bristol Laboratory, Bristol,
UK) depending upon the location of the clinical site. All
samples identified as positive in one TEDDY laboratory
are sent to the other laboratory for confirmation [13].
The second primary outcome is the clinical appearance
of T1D as defined using the American Diabetes Associa-
tion criteria [14].

The TEDDY study collects participants’ stool, plasma,
serum, red blood cells, peripheral blood mononuclear
cells, along with extensive questionnaire data. Blood sam-
ple collection begins at the 3-month study visit and con-
tinues at a 3-month interval up to 4 years of age. If a
subject develops persistent IA, then they continue on the
3-month interval schedule up to age 15 years; otherwise,
they switch to a 6-month interval schedule. In addition,
the child’s parent collects at least 5 g of the child’s stool
each month (up until 48 months of age, then every
3 months until the age of 10 years and then biannually
thereafter) into the three plastic stool containers provided
by the clinical centre. All samples have been stored at a
central TEDDY repository by following the centralized
DCC instructions [15].

Biomarkers

The design of the TEDDY biomarker studies included the
assessment of dietary biomarkers, metabolomics, gene ex-
pression and microbiome/viral metagenomics in plasma
and stool samples collected at protocol-specified time
points from the participating children. A different labora-
tory responsible for the analysis of each biomarker was se-
lected after carefully reviewing applications received in
response to a request for proposals developed by TEDDY
investigators.
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The dietary biomarker laboratory (Disease Risk Unit, Na-
tional Institute for Health and Welfare, Helsinki, Finland)
was selected to analyse plasma 25-hydroxyvitamin D,
vitamin C, alpha/gamma-tocopherol, carotenoid and
cholesterol concentrations and erythrocyte fatty acid com-
position. The metabolomics laboratory (The NIH West
Coast Metabolomics Center, University of California Davis,
CA, USA) was selected to profile metabolomes using
plasma samples. The micobiome/vial metagenomics labo-
ratory (Baylor College of Medicine, Houston, Texas, USA)
was selected to identify viral candidates and associated
microbiome (bacterial, eukaryotes, viruses) using stool
and plasma samples. The gene expression laboratory
(Jinfiniti Biosciences LLC, Georgia Health Sciences
University, GA, USA) was selected to identify gene
expression profiles using mRNA samples.

Study design and application

A subject who developed one of the two primary outcomes
(persistent confirmed IA and/or T1D) was defined as a
case. The event time of persistent confirmed IAwas the date
of first blood draw of confirmed IA that was subsequently
found to be persistent. The event time of T1D was the date
of diagnosis. If the diagnosis was based on two oral glucose
tolerance tests (OGTTs), then the date of diagnosis was the
first OGTT that met the diagnostic criteria.

In a nested case–control design, controls should be ran-
domly selected among cohort members who have not yet
developed the disease at the time a case is diagnosed (risk
set sampling or incidence density sampling) [16]. TEDDY
defined potential controls for a case as subjects who were
event-free within ±45 days of the case’s event time, which
corresponds to the midpoint between the 3-month interval-
scheduled protocol visits at which the events were deter-
mined. A control for a case of persistent confirmed IA was
a TEDDY participant who had not developed persistent
confirmed IA by the time that the case to which it is
matched developed IA, within ±45 days of the event time.
Because two consecutive samples are involved to deter-
mine the persistency, the subject was counted as a poten-
tial control if his or her valid sample within ±45 days of
the event time was not confirmed positive; or if the sample
was confirmed positive, then the following sample had to
be not confirmed positive with the available results. A con-
trol for a case of T1D was defined as a TEDDY subject who
had not been diagnosed as T1D, within ±45 days of the
event time. If a subject had an OGTT indicative of diabetes
within ±45 days of the event time of the case to which it is
matched, the subject was excluded to be a potential control
if there was no following OGTT or if the following OGTT
met the definition of diabetes.

Matching factors were chosen to be clinical centre, gen-
der and family history of T1D to control the differences in
genetic background and in sample/data handling be-
tween clinical centres. Although matching is often used
to improve statistical efficiency, a minimum number of
matching factors is recommended in biomarker studies
to avoid overmatching [4,17]. Also, matching on risk fac-
tors in a nested case–control design may increase the like-
lihood that a control becomes a case later during the
follow-up than the likelihood in the full cohort.

Because of sample assay costs, the selection of three
controls per case was planned for the dietary biomarker
and metabolomics samples (1 : 3 matched), and one con-
trol per case was planned for gene expression and
metagenomics samples (1 : 1 matched). To plan on syner-
gistic and comparative studies across biomarker studies,
the same controls for each case were planned to be used
for all analyses. All samples collected from TEDDY study
visits up to the event time were to be processed. Thus,
biospecimen availability at each study visit was also a con-
sideration in the selection of potential controls because
the number of samples varied with each type of sample
and compliance with protocol visits. A random sample of
matched controls from the pool of potential controls
resulted in only limited success in finding controls with
a high proportion of samples that matched the sample
availability of the cases (Figure 1). This approach would
have generated about a 40% loss of case–control pairs.
To overcome this problem, six potential controls were ran-
domly selected from the pool of controls, and then, three
controls were selected on the basis of the best sample
availability. The sample availability of a potential control
was counted only when the case to which it is matched
carried available sample. The best sample availability
was based on the ratio of the number of available samples
in a potential control to the number of available samples
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Figure 1. Average number of control samples collected
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in the case. Figure 2 summarizes this control selection
procedure for TEDDY biomarker studies.

Each analyte was to be run in a ‘batch’, which was
determined by each laboratory. The analytic batch in a
laboratory would be a group of biological samples that
are analysed together under a particular assay technology.
Batch effects were considered because they could create
bias in identifying a biomarker by generating a nonidenti-
cal random error distribution between cases and controls
[18,19], if the corresponding samples were run in differ-
ent batches. For example, batch effects can occur if a
subset of experiments were run on 1 day and another set
on the other day, if two technicians were responsible for dif-
ferent subsets of the experiments or if two different lots of
reagents, chips or instruments were used [20–23]. To mini-
mize batch effects in comparing case–control samples at
the design stage, we arranged all samples collected from a
case and matched controls to be run in the same analytic
batch. When it was not feasible because of the limited num-
ber of samples that the batch can process, we arranged sam-
ples that were to be compared with each other (i.e. collected
at the same visit) to be run in the same analytic batch.

External QC samples

External QC samples were used to measure batch to batch
variability for the various biomarkers being assayed. These
QC samples were prepared by the DCCQC laboratory located

in the Biomedical Science Facility on the campus of the
University of South Florida. Each QC sample was designed
to be biologically identical to allow for true evaluation of
inter assay variability. Handling/processing and sample
volume/storage container appearance was identical to case
and control specimens to allow for proper blinding of QC
samples to each laboratory. QC samples for the dietary bio-
markers, gene expression, metabolomics and microbiome/
viral metagenomics are described in Table 1. Following
preparation, QC samples were shipped to the TEDDY central
repository for storage prior to dissemination among various
laboratories for subsequent analysis.

Data analysis plan

Conditional logistic regression will examine the associa-
tion between a candidate biomarker and becoming a case
within a stratum. For high-throughput analyses, false
discovery rate will be controlled to filter potential
biomarkers, and penalized conditional logistic regression
will be used for simultaneous selection [24].

Each analyte frombirth to an event time (mostly 3months
apart) will be profiled for a subject. A marker will be
analysed as a profile at a given age of interest or a subject
specific change estimated from a mixed effects model.

Confounders other than matching factors may be
adjusted in the analysis as identified. Biomarkers specific
to a matching factor may be missed in this study.

Dietary biomarker laboratory and metabolomics laboratory  

Step1: Start from the event time with least number of potential controls, after matched on clinical 

center, gender and family history of T1D (say time T1) 

Step2: Randomly select 6 controls and then select a control based on the best sample availability 

from those 6 until 3 controls are selected, without replacement. 

Step3: At the time T2 with the next least number of potential controls, include all subjects 

meeting the above matching criteria, with replacement of the controls selected at the time T1, if 

they meet the eligibility criteria. 

Step4: Randomly select 6 controls and then select a control based on the best sample availability 

from those 6 until 3 controls who were NOT selected at the time T1 are selected, without 

replacement. 

Gene expression laboratory and metagenomics laboratories 

After the step4, 1 control was randomly selected from those 3 selected controls.  

Figure 2. Control selection procedure
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Results

Cases and controls

This nested case–control study was based on the data col-
lected as of 31 May 2012. The median age of follow-up
was 40 months with the first quartile (Q1) is 25 months
and the third quartile (Q3) is 60 months. There were
114 T1D cases (median age of diagnosis 29 months, Q1
= 19 and Q3 = 41), and 419 persistent confirmed IA cases
(median age 21 months, Q1 = 12 and Q3 = 33). How-
ever, one persistent confirmed IA case did not have a po-
tential control after matching on clinical centre, gender
and family history of T1D.

Two separate nested case-control studies were
planned for persistent confirmed IA and T1D; 95 cases
were identified for both T1D and persistent confirmed
IA, 323 persistent confirmed IA cases were not diag-
nosed with T1D, and 19 cases developed T1D without
previously meeting the criteria for a persistent con-
firmed IA. Over 50% of cases were from Sweden and
Finland, and about 30% of the cases had a first degree
of relative in T1D (Table 2).

A total 1253 controls were selected for the persistent
confirmed IA studies for the dietary biomarker laboratory
and metabolomics laboratory. Except for one case with
only two potential controls available, 417 cases were
matched with three controls. Of those 1253 controls,
418 controls were selected for persistent confirmed IA
studies in the gene expression laboratory and the
metagenomics laboratory. For T1D, 342 controls were
for 114 cases for the studies in the dietary biomarker
laboratory and the metabolomics laboratory. Of those
342 controls, 114 controls were selected for studies in
the gene expression laboratory and the metagenomics
laboratory. For a control, samples were to be processed
only when the matched case had available sample at a
corresponding visit.

On the basis of our design, because of the sample avail-
ability, there was about a 10% reduced number of pairs

for 1 : 1 studies and a 20% reduced number of pairs for
1 : 3 studies, instead of the 40% reduction from the sim-
ple random control selection. That is, the numbers of
available pairs for IA studies are 1002 pairs (1 : 3) and
376 pairs (1 : 1) and those for T1D studies are 273 pairs
(1 : 3) and 102 pairs (1 : 1). As a result, the nested
case–control study will have 80% or greater power at a
significance level of 5% to detect ≥2.01 relative risk
(RR) with 1002 pairs if the proportion of exposure was
5%, and it can detect ≥3.14 RR with 376 pairs. With
273 pairs, the study will have at least 80% power to
detect ≥3.83 RR, and with 102 pairs, it will detect
≥8.99 RR [25].

Efficiency in the number of samples to
be processed

Because of the nature of a nested case–control design,
there were controls that subsequently became cases later
in their follow-up. Among those 418 persistent confirmed
IA cases, 42 (10%) subjects were selected as controls for
another persistent confirmed IA cases prior to becoming
IA, 23 (6%) were selected as controls for T1D cases and
8 (2%) were selected for both. Among those 114 T1D
cases, six (5%) subjects were selected as controls for an-
other T1D cases, six (5%) were selected as controls for
persistent confirmed IA cases and one (1%) was selected
for both. On the other hand, 116 (9%) controls for persis-
tent confirmed IA cases were also selected as controls for
T1D. This links one matched case and its controls to
another matched case and its controls. A ‘set’ was created
to include unique subjects from the linkages in persistent
confirmed IA case controls and the T1D case controls.
The number of subjects in a set increased depending on
the complexity of the linkage.

For those persistent confirmed IA cases who also serve
as controls for T1D, all samples collected up to the event
time of persistent confirmed IA were to be processed, but
samples collected from the visits after the time of persistent

Table 1. External quality control (QC) sample

Laboratory QC sample preparation

Dietary biomarkers Plasma Human plasma aliquoted into case/control matched subject vials1

Gene expression Whole blood RNA isolated from whole blood aliquoted into case/control matched subject vials
Metabolomics Plasma Human plasma aliquoted into case/control matched subject vials1

Microbiome/viral metagenomics Stool Human stool aliquoted into case/control matched subject vials2

Plasma Viral collection spiked into human plasma and aliquoted into case/control matched
subject vials3

1Human plasma commercially received from Rockland Immunochemicals in four independent lots.
2Human stool received from two non-T1D independent donors.
3Following viruses were spiked into donor plasma at the documented concentrations: poliovirus (PV 200 PFU/mL), rotavirus (20 000 PFU/
mL), vesicular stomatitis virus (200 PFU/mL) and adenovirus (20 000 PFU/mL).
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confirmed IA were to be processed only for the visits when
the matched T1D case had available sample. For those T1D
cases who were preceded by persistent confirmed IA, as
well as serve as controls for persistent confirmed IA cases,
all samples collected until the T1D event time were to be
processed. For those controls selected for both persistent
confirmed IA and T1D, samples were to be processed if
either case had available sample at the visit.

Although each analyte result derived from a sample will
be utilized for all biomarker studies of persistent confirmed
IA and/or T1D, samples will only need to be processed
once for each analysis in each lab. Extracting unique sam-
ples from these sets reduced by about 10% the number of
samples that need to be processed in each lab. The third
column in Table 3 summarizes the number of samples to
be processed per analyte in each biomarker laboratory.
For example, persistent confirmed IA study will need
3060 ascorbic acid analysis results, and T1D study will
need 1039 results. To do that, 3736 unique samples were
identified from 253 sets for ascorbic acid analysis.

To reduce batch effects

As shown in Table 4, the number of samples to be shipped
at a single time, as well as the number of samples that can
be analysed together, was determined by each laboratory
specific to the assay technology.

The dietary biomarker laboratory was capable of han-
dling 56 samples in one batch for vitamin C analysis, 96
samples for vitamin D only analysis, 64 samples for tocoph-
erol and additional vitamin D analysis and 20 samples for
fatty acid analysis. After saving places for external QC
samples, the remaining number of places was available for

case–control samples. For example, 52 places were avail-
able for the case and control samples for vitamin C analysis,
after leaving four places for external QC samples in the
batch. The median number of samples per set was 10 (Q1
= 6 and Q3 = 16). If we planned to run all samples
collected from all TEDDY visits in a set, 9 out of 253 sets
(4%) would not be run in the same batch because of
exceeding the maximum number of samples that the lab
can run in the same batch for vitamin C analysis (i.e. 52).
The metabolomics laboratory was capable to process 40
samples in one batch. After saving four places for external
QC samples, 36 places were available for case–control
samples. Although the first attempt was to run all samples
collected from all TEDDY visits in the same set, the analytic
batch sizes for fatty acid composition analysis in the dietary
biomarker laboratory and analysis for metabolomics were
very limited. For fatty acid, the median number of samples
per set was 12 (Q1 = 8 and Q3 = 19), and about 26% of
sets included more than the limit (i.e. 18). For the
metabolomics laboratory, the median number of samples
per set was 27 (Q1 = 15 and Q3 = 44), and about 35% of
sets included the number of samples greater than the limit
(i.e. 36). Hence, for 1 : 3 matched studies, a set was modi-
fied to include the samples collected at a specific visit in
the set, and the allocation of those case–control samples
between visits was left at random. For fatty acid analyses,
the 266 sets were modified to be 907, and of those modified
907 sets, about 2% exceeded the limit. For the
metabolomics laboratory, the 275 sets were modified to be
2308, and 0.1% of those 2308 modified sets exceeded the
limit. Modified sets were randomly ordered, as well as the
subjects within a modified set. Those modified sets exceed-
ing the limit in each analyte were randomly divided and
allocated in the consecutive batches.

Table 2. Study subject characteristics: mean (SD) or n (%)

Persistent confirmed islet autoimmunity T1D

Case Control Case Control

Design 1 : 1 418 418 114 114
1 : 3 417 1251 114 342

1* 2
Age (months) 24 (15) (min = 2, max = 72) 32 (16) (min = 8, max = 75)
Matching variables
Clinical site Colorado 57 (14%) 171 (14%) 16 (14%) 48 (14%)

Georgia/Florida 29 (7%) 87 (7%) 6 (5%) 18 (5%)
Washington 38 (9%) 113 (9%) 8 (7%) 24 (7%)
Finland 114 (27%) 342 (27%) 36 (32%) 108 (32%)
Germany 37 (9%) 111 (9%) 18 (16%) 54 (16%)
Sweden 143 (34%) 429 (34%) 30 (26%) 90 (26%)

T1D family history First-degree relative 95 (23%) 284 (23%) 41 (36%) 123 (36%)
General population 323 (77%) 969 (77%) 73 (64%) 219 (64%)

Gender Female 184 (44%) 551 (44%) 61 (54%) 183 (54%)
Male 234 (56%) 702 (56%) 53 (46%) 159 (46%)

T1D, type 1 diabetes.
*There was one case with only two controls available.
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For the metagenomics and the gene expression studies
that used 1 : 1 matching, the analytic batch size made it
possible to include all samples collected from all TEDDY
visits in a set. About 2% of sets (6 out of 399) exceeded
the limit only for stool analysis, which led to a random
divide into two consecutive batches.

Number of samples and batches to be
processed

After decoding the linked complexity and arranging batches
to minimize the effects, there were 3736 samples to be
processed in 78 batches for vitamin C analysis, 2468 samples
in 28 batches for vitamin D analysis, 3736 samples in 67
batches for tocopherol and vitamin D analysis, 4889
samples in 319 batches for fatty acid analysis, 11 571
samples in 347 batches for metabolomics analysis,
13 073 samples in 165 batches for metagenomic analysis
using stool, 6230 samples in 75 batches for metagenomic
analysis using plasma and 5080 samples in 60 batches for
gene expression analysis.

Discussion

With the TEDDY experience as an example, we presented
the implementation of a modified nested case–control de-
sign specific to multiple biomarker studies for IA and T1D.
Major steps taken were the choice of an epidemiological
design, the choice of handling sample availability and
the choice to reduce batch effects.

In implementing a nested case–control design, a control
selected to match one case is possibly selected to match
another case, and if an individual selected as a control
develops the disease later, this person can also serve as
a case. In practice, this aspect brings up negative reaction
when investigators seek to select controls from among
those who remain disease free throughout the follow-up,
which is typically used in biomarker discovery studies.
But a random selection of controls from a clearly defined
risk set is necessary to obtain unbiased results as it has
been discussed in previous studies [4,10].

We chose an approach to selecting controls with the most
available samples from a random sample of potential con-
trols. This markedly improved the efficiency of the case–
control study over a random selection of controls by increas-
ing the number of samples available for each analysis.
Although one option was to match on entirely cases’ sample
availability, concerns were raised from the possible spectra
of bias because protocol compliance (i.e. sample availability)
might be correlated with an environmental trigger of IA or
diabetes. Hence, our choice was to randomly select six

subjects from the pool of potential controls and then select
the controls from them, on the basis of the best sample avail-
ability. This approach was intended to mediate the concern
of bias, while saving the efficiency from the potential loss
in selecting completely at random.

Additionally, the organization of the selected cases and
controls and their samples to accommodate the varying
batch sizes posed logistical challenges in order to minimize
the batch effects when case–control comparisons are to be
made. Although each laboratory strives to be certain that an-
alytic results obtained froma given sample are not influenced
by a particular batch, the variability of analytic results within
a batch is smaller than the variability of analytic results be-
tween batches. We avoided potential batch effects by arrang-
ing those samples in a set of cases and their matched controls
to be run in the same analytic batch. However, because of the
large volume of samples, the process in each laboratory will
take between 8 and15 months, and batch effects because of
this aspect are unavoidable. For example, 60 batches will
be processed in the gene expression lab over 15 months. In
our setting, the external QC data results will provide useful
sources to assess the batch effects.

Through this process, the careful setting of risk sets
retained the advantages expected by a nested case–
control design. The selection of controls resulted in less
than a 20% loss of the case–control pairs because of sam-
ple availability, the selection of samples improved by 10%
the efficiency of analysing the two primary TEDDY end
points and also reduced potential laboratory variability
because of batch effects.
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