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ABSTRACT. We show two examples of how we answer biological questions by
converting them into statistical hypothesis testing problems. We consider gene
abundance data, and apply permutation tests. Though these tests are simple,
they allow us to test biologically relevant hypotheses. Here we present the anal-
ysis of data rising from two studies on Type 1 Diabetes. In the first study [3] are
interested in comparing the gut bacterial biodiversity in children at risk and not
at risk of developing diabetes. In the second study, [4] compare the gut bacterial
biodiversity of children in six different sites in USA and Europe. The statistical
analyses presented here are parts of the “statistical methods” in two papers men-
tioned above. Here we offer a detailed explanation of the “Statistical Methods”
addressed to readers with a statistics background.

1. Introduction

The main focus of this paper is to present in more detail the “statistical method-
ology” of two relevant studies [3] and [4] in Type 1 Diabetes (T1D). A deeper ex-
planation of the data set and biological interpretation can be found there. Here
we aim to explain the biological question and the structure of the data that it is
analyzed there in. In [3], the researchers found that children who developed T1D
later in life have a more different gut bacterial biodiversity than children who
do not develop T1D. In [4],the gut diversity of individuals in different geographic
locations is measured across time. The researchers are interested in testing if
the gut bacteria diversity evolves similarly at these sites. In Sections 2 and 3 we
present the first and second examples respectively. There is also a small discus-
sion section at the end.

2. First example

The study of [3] is motivated by several animal studies suggesting that rats
that develop T1D have a significantly different gut bacteria than rats that are
resistant to the disease. They were interested in seeing if the same applies to
human beings. The researchers wanted to determine whether the children in the
control group have a gut bacteria population (microbiome) more similar to one
another than the corresponding microbiomes of the case group.
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(2.1) Data. The data come from eight Finnish children participating in the Di-
abetes Prediction and Prevention study [8, 5, DIPP]. For each child, three stool
samples were obtained at three time points, obtaining a total of 24 separate sam-
ples. There are four cases and four controls, the cases are children that became
autoimmune and developed T1D. This is a paired design, each child in the case
group was matched with a child in the control group of the same age and T1D-
susceptibility genotype that did not develop autoimmunity or T1D during the
study. Though the matching is used in other statistical analyses in [3], in the
analysis discussed here this matching is ignored.

The stool samples of the 8 individuals provide the data for this paper. High-
throughput, 16S ribosomal ribonucleic acid (16S rRNA) sequencing was performed
on the stool samples. 16S rRNA gene sequencing is a widely used technology that
allows the classification of bacteria. The 16S rRNA is a highly conserved gene
found in all bacteria that contains hypervariable regions. The nucleic acid se-
quence of these regions is unique to different species of bacteria and can be used
to identify bacteria. The set of 16S rRNA sequences that are amplified from a
sample during high-throughput sequencing are clustered into Operational Tax-
onomic Units (OTUs) based on sequence similarity. Different OTUs correspond
to different groups of bacteria that share a certain level of 16S rRNA sequence
similarity. Every OTU has a name and the data used here are counts of OTUs in
each sample. Table 2.1 shows some rows of the data set corresponding to the first
and third individuals at time 1. We will use the data in this table as an example
below.

First individual Counts
First individual

01_FS63YEP02GADJS 7
01_FS63YEP02GWM9M 9
01_FS63YEP02HBHGD 2
01_FS63YEP02HLYA0 1
01_FS63YEP02JJMWG 2

Third individual
20_FS63YEP02FGL4W 2
20_FS63YEP02FLYRR 1
20_FS63YEP02JVBDD 1
20_FXCV9AW02H57E6 5
20_FXCV9AW02IFECK 95
20_FXCV9AW02J3H7K 1
20_FXCV9AW02JTQOI 21

Table 1. A subsample of the data corresponding to the first and third
individuals at time 1.

The first row of the Table 2.1 indicates that the OTU “FS63YEP02GADJS” was
observed 7 times in the first individual at time point 1. Two different OTUs cor-
respond to two different bacteria, but two OTUs may be similar. The similarity is
a measure based on the sequences and it is measured in a 0-100% scale. A simi-
larity matrix can then be built, and with it a phylogenetic tree is built. This is a
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Figure 1. Phylogenetic tree corresponding to the OTUs in Table 1. The
counts are given between parentheses.

weighted tree in the Theory of Graphics sense, where every leaf corresponds to an
OTU. Every branch of the tree has a weight associated to it. The tree is built in
such a way that the similarity between two leaves is the sum of the weight of the
branches we have to pass in order to go from the leaf to the root of the smallest
subtree containing both leaves. Figure 1 shows the phylogenetic tree correspond-
ing to the OTU in Table 1. For example, the similarity between the first and third
most upper leaves (labeled 20_FXCV9AW02IFECK and 01_FS63YEP02GADJS)
tree is 0.161+0.024= 0.185.

(2.2) Statistical Analysis. In this subsection we explain how we used the
Unifrac distance [6] and a permutation test inspired in the P-test of [7] to compare
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the gut diversity of the case and control groups. In particular, we are interested in
testing if the gut microbiome of the control groups are more similar to one another
than the microbiomes in the case group.

The phylogenetic tree considers the similarity between OTUs but not the OTU
counts. The weighted version of the UNIFRAC distance [6] incorporates the OTU
count and the OTU similarity information. Using the phylogenetic tree with the
OTUs of two individuals, we can compute the weighted UNIFRAC distance be-
tween the two bacteria populations. It is defined as

(2.1) u =
n∑

i=1
bi

∣∣∣∣ A i

AT
− Bi

BT

∣∣∣∣
Here, n is the total number of branches in the tree, bi is the length of branch i,
A i and Bi are the number of descendants of branch i from communities A and
B respectively, i = 1, . . . ,n. AT and BT are the total number of sequences from
communities A and B respectively. To adjust for different sample sizes, A i and Bi
are divided by AT and BT . In our toy example (See Figure 1), if A and B represent,
respectively, the community coming from the first and third individuals, n = 22,
AT = 21, BT = 126,

u =0.048
∣∣∣∣ 9
21

− 96
126

∣∣∣∣+0.069
∣∣∣∣ 7
21

− 96
126

∣∣∣∣+0.024
∣∣∣∣ 0
21

− 96
126

∣∣∣∣
+0.161

∣∣∣∣ 0
21

− 95
126

∣∣∣∣+·· ·+0.166
∣∣∣∣ 9
21

− 0
126

∣∣∣∣
=0.45

The more different the two populations are, the larger the unifrac distance is.
[7] proposes a permutation test called “P test” to determine if two populations are
significantly (i.e., statistically) different. Under the null hypothesis, i.e. under the
assumption that both bacteria populations are equal, the population labels of the
OTUs are exchangeable. The test consists in permuting the population labels in
the phylogenetic tree, with the permuted labels, compute u? according to (2.1). We
repeat the process M times to obtain u(1)

? , . . . ,u(M)
? . The p-value is the proportion

of times that u > u?, in math, p-value= ∑M
m=1 1(u > u(m)

? )/M, where 1(A) is the
indicator function of the event A. Rejecting the null hypothesis is claiming that
the bacteria populations are different. In other words, the difference between the
OTU counts are not due to random chance. It is worth it to mention that the
Unifrac distance measures the difference in the diversity of two populations. This
is, a large unifrac distance indicated that one population is more diverse than the
other. Two populations can be equally diverse but completely different. This is,
two samples or populations could be statistically similar even though they might
not contain any common bacteria.

As mentioned earlier, [3] were interested in knowing if the controls have a more
similar gut bacteria population to one another than the case individuals. To test
so, in [3], we performed the following permutation test, inspired in the P-test:

1. Denote with ai, o j the case i and control j individuals respectively, i, j =
1,2,3,4; and u(ä,◦) the unifrac distance between the individuals ä and ◦.
For each one of the six possible pairs of individuals in the case group we



TWO APPLICATIONS OF PERMUTATION TESTS IN BIOSTASTICS 259

−4 −2 0 2 4 6

0
.0

0
0

.0
5

0
.1

0
0

.1
5

0
.2

0
0

.2
5

Time 1

q0.95

D
obs

p−value= 0.128

−15 −10 −5 0 5

0
.0

0
0

.0
2

0
.0

4
0

.0
6

0
.0

8
0

.1
0 Time 2

q0.95

D
obs

p−value= 0.044

−20 −15 −10 −5 0 5

0
.0

0
0
.0

2
0

.0
4

0
.0

6
0

.0
8

0
.1

0
0
.1

2 Time 3

q0.95

D
obs

p−value= 0.065

Figure 2. Histogram of simulated D?s along with the 95% percentile,
Dobs and p-value for each one of the times in the study. See

compute the unifrac distances and sum them to obtain

Sobs
a = u(a1,a2)+u(a1,a3)+u(a1,a4)+u(a2,a3)+u(a2,a4)+u(a3,a4)

Similarly, we define Sobs
o as the sum of the unifrac distances of each of the

six possible pairs of individuals in the control group. Our test statistic is

Dobs = Sobs
a −Sobs

o .

2. For each phylogenetic tree, we randomly permute the labels of the indi-
viduals (children) and, as we computed Dobs but now considering these
permuted-label trees, we compute D?.

3. We repeat step 2 a total of M = 105 times to get a sample of differences, i.e.,
of D?: D?

1 , . . . ,D?
M

4. We compute the p-value as the proportion of D?s greater than Dobs. In
math,

p−value= (1/M)
M∑

m=1
1(Dobs > D?

m).

Since the Unifrac distance is a measurement of how far apart two microbiomes
(i.e., bacteria populations) of two individuals are, a large value of Dobs would sug-
gests that the case microbiomes are more different to one another than the control
microbiomes. Equivalently, Dobs large is evidence that the control microbiomes
are more similar to each other than the case microbiomes. The question becomes
now what large means. If all the populations were equal, the population labels in
every phylogenetic tree would be exchangeable. Following the idea of the P-test,
simulated samples from the null distribution of the statistic D are obtained by
permuting the population labels in every phylogenetic tree.

Figure 2 shows the histogram of the D?s for each time. The short and long
arrows indicate the 95% quantile and Dobs respectively. The long arrow is at the
right of the 0.95 quatile (short arrow) just at time 2. That is, we are able to claim
that at time 2 the population of microrganisms in the control group are more
similar to one another than in the case group. The data suggest that the same is
true at time 1 and 3 but is not conclusive.
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3. Second Example

The second example is part of the statistical analysis in the paper [4]. Inspired
by the findings of [3] and others, researchers suspect that the gut microbiome has
a role in the development of T1D. The composition of the gut microbiome of chil-
dren in six different locations was analyzed across time. The sampling units are
children genetically at high risk for T1D but currently free of islet autoantibodies
or disease. The TEDDY group gathered data about the the composition of the gut
microbiome of children across time in six different locations. The sampling units
are children genetically at high risk for type 1 diabetes but currently free of islet
autoantibodies or disease. In the current manuscript, we explain and reproduce
the statistical analysis that yields them to conclude that the microbiome diversity
across time differs in the six study sites.

(3.1) Data. [4] analyzed stool samples taken monthly from children starting at
age four months old until they turned 19 months old. The data correspond to
90 children, 15 from each one of the six different participating sites: Finland,
Germany, Sweden, Washington state, Colorado, and Georgia/Florida. As in the
example in Section 2, high-throughput 16S rRNA sequencing was performed on
these stool samples. The data consists of a table of genus-level OTU counts for
every stool sample (not shown). Since we are interested in the bacterial diversity
the biologists work with the Shannon Diversity Index [10, SDI],

SDI=
R∑

i=1
pi log pi,

where i indexes the different OTUs in the sample, pi is the proportion of OTUs
i in the sample, and R is the total number of different OTUs in the sample. The
more diverse the bacteria population is, the larger the SDI is. For our purposes the
data were reduced to a sequence of SDI measurements across different time points
for every child. These sequences are shown in Figure 3. Every line represents the
SDI of a child across time. Visually, we cannot appreciate any clear difference
among the SDI curves across the sites, except, probably, Sweden where the SDI
seems to have less variance. [4] speculate that the reason for this may be that
the Sweden children are the least exposed to antibiotics of all the sites in the
study. Since there are few stool samples for the youngest and oldest ages, we
have removed from this analysis the data corresponding to ages under 100 days
and over 550 days.

(3.2) Statistical Analysis. The aim of this statistical analysis is to test if the
curves of the SDI are statistically different or not. In order to do so we need to
introduce a statistical model. We consider the following mixed model

(3.1) yi jk =µ+αi +β j +γtk +δi tk +ηt2
k +εi jk,

where, yi jk represents the k-th measurement of the SDI for child j at site i, µ is
the over all mean, αi is the fixed site effect (for estimation purposes we impose∑

iαi = 0), β j ∼ N(0,σ2
child) is the child-specific random effect, tk is the child age

in days (treated as a continuous variable standardized to have sample mean and
variance equal to 0 and 1 respectively) when the k-measurement was taken, the
fixed effect δi is the interaction coefficient between days and site (also assuming∑

i δi = 0), η is also a fixed effect, and εi jk ∼ N(0,σ2
ε ) is a random error. In the
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context of the model, testing if the SDI curves are statistically significant reduces
to test

(3.2) H0 :α1 =α2 = ·· · =α6 = 0 vs H1 :
∑

i
α2

i > 0

Strictly speaking, in order to test if the curves are the same for all sites, we should
not only test that all αi are zero but also that all δis are equal to zero. Neverthe-
less, rejecting the null hypothesis as stated above would make us conclude not all
curves are equal.

We can think of the model in (3.1) as an Analysis of covariance ANCOVA [2, See
p. 62 on ] where the covariate is time (in days). Fitting the model in a statistical
package is straightforward. We used the function “aov” in the lme4 R package [9]
by [1]. The R code is,
> model=aov(Shannon \sim Site+Error(1/Patient)+Time+Time:Site+Time2)

where Shannon is the SDI, Site takes one of the six possible locations, Time
is the standardized time in days and Time2= Time2 fits the model. An F test of
(3.2) is straightforward, (R code >summary(model))

Df Sum Sq Mean Sq F value Pr(> F)
Site 5 30.98 6.20 25.58 < 2×10−16

Time 1 20.42 20.42 84.29 < 2×10−16

Time2 1 0.00 0.00 0.01 0.9217
Site:Time 5 2.93 0.59 2.42 0.0341
Residuals 1099 266.17 0.24

As one can see Site is highly significant and we reject the null in (3.2). We notice
that the site time interaction (Site : Time) is significant. One of the assumptions
of ANCOVA is that the “covariate is not related with the treatment” [2, See p. 63
on ]. This is not the case if there is an interaction between Site and treatment. Ad-
ditionally, the Kolmogorov-Smirnov test rejects (not shown) the normality of the
residuals. The ANCOVA is known to be robust against the normality assumption
of the errors as long as the symmetry of the errors follows. We test the symmetry
of the residuals following [11], explained below. Let x= x1, . . . , xn denote the sam-
ple of size n from a distribution with mean µ, median ν and standard deviation
σ. Let x̄, M and s denote the sample mean, median and standard deviation. They
propose a Bootstrap test of symmetry consisting in

1. Define Cobs = (x̄−M)/s, the sample version of the measure of skewness (µ−
ν)/σ

2. Define the symmetrized empirical distribution F̂s as the CDF that gives
1/(2n) to all possible values in the sample and to all points in {2M −
x1, . . . ,2M− xn}

3. Obtain T bootstrap samples F̂s of size n. For each bootstrap sample x?
compute its sample mean, median and standard deviation x̄?, M?, s? and
obtain C? = (x̄?−M?)/s?

4. The bootstrap p-value is then the proportion of |C?|s greater that |Cobs|.
Here |x| denotes the absolute value of x.

This test applied to the residuals (with T = 106 boot strap samples in step 3)
yields a boot-strap p-value of < 10−6. The residuals and then the error terms are
not symmetric.
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Figure 3. Shannon Diversity Index per child through time (days) in the
six different study sites. Every line represents the measurement of the
Shannon Diversity Index of a child across time. For visual purposes, the
line joints the time/SDI points of the child it represens.

To deal with the violation of the assumptions of the ANCOVA model, we apply
a permutation test. Large values of F indicate that the null hypothesis is false.
We apply the following simple permutation test permuting the labels of Site.

1. Compute Fobs, the F statistic in the ANCOVA table testing for the model in
(3.1) testing (3.2).

2. Permute the “Site” label, and compute the F statistic T times to obtain a
sample F?(1), . . . ,F?(M)

3. The p-value of this permutation test is the percentage of F?s greater than
Fobs

Applying this permutation test (with T = 105) we obtain a p-value < 10−5. The
data provide enough evidence to reject the null hypothesis in (3.2). This is, the
SDI curves are not all equal in the six sites.

4. Discussion

Through this paper we have shown two examples of the application of simple
permutation tests to answer relevant biological questions. These examples are the
product of joint work with researchers at the University of Florida and are part
of the “Statistics Methods” section of two biology papers. The main merit of these
analyses is the collaboration between biologists and statisticians to formulate the
biological problem in statistical terms. In the first example a permutation test
allowed us to answer a relevant question without the need to depend on model
assumptions. In the second example, a model is required. A standard F-test is
applied to the parameters of the model. If the data followed the assumptions
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of this F-test (normality or at least symmetry of the random errors), the F-test
would be valid. This is not the case, we obtain evidence against the symmetry of
the distribution of the random errors trough a boot-strap test of symmetry applied
to the residuals of the model. The F-test is not valid. Nevertheless, we are able to
take advantage of this F-test by incorporating it into the scheme of a permutation
test. With this we avoid more complicated models in order to get an answer to the
biological question.
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Hyöty, M.D., Ph.D.∗±6, Jorma Ilonen, M.D., Ph.D.Υ¶3, Mikael Knip, M.D.,
Ph.D.∗±, Maria LŽnnrot, M.D., Ph.D.∗±6, Elina MantymakiΥ∧, Juha Mykkä-
nen, Ph.D.∧Υ3, Kirsti Nanto-Salonen, M.D., Ph.D.Υ∧12, Tiina Niininen±∗12, Mia
Nyblom∗±, Anne Riikonen∗±2, Minna RomoΥ∧, Barbara SimellΥ∧9,12,15, Tuula
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