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Type 1 diabetes (T1D)—an autoimmune disease that destroys 
the pancreatic islets, resulting in insulin deficiency—often 
begins early in life when islet autoantibody appearance 
signals high risk1. However, clinical diabetes can follow in 
weeks or only after decades, and is very difficult to predict. 
Ketoacidosis at onset remains common2,3 and is most severe 
in the very young4,5, in whom it can be life threatening and dif-
ficult to treat6–9. Autoantibody surveillance programs effec-
tively prevent most ketoacidosis10–12 but require frequent 
evaluations whose expense limits public health adoption13. 
Prevention therapies applied before onset, when greater islet 
mass remains, have rarely been feasible14 because individuals 
at greatest risk of impending T1D are difficult to identify. To 
remedy this, we sought accurate, cost-effective estimation 
of future T1D risk by developing a combined risk score incor-
porating both fixed and variable factors (genetic, clinical and 
immunological) in 7,798 high-risk children followed closely 
from birth for 9.3 years. Compared with autoantibodies alone, 
the combined model dramatically improves T1D prediction at 
≥2 years of age over horizons up to 8 years of age (area under 
the receiver operating characteristic curve ≥ 0.9), doubles the 
estimated efficiency of population-based newborn screening 
to prevent ketoacidosis, and enables individualized risk esti-
mates for better prevention trial selection.

Type 1 diabetes (T1D) is associated with substantial heritable 
risk, notably from common human leukocyte antigen (HLA) vari-
ants but also from many diverse genetic loci15. Environmental fac-
tors increase the risk16. Recent attempts to predict who will develop 
T1D and at what age have used islet autoantibodies17,18, metabolic 
status19,20, genetic factors21–25 and family history26. Longitudinal 
autoantibody measurement has been established as the strongest 
single predictor of future T1D in first-degree relatives18 or in general 
populations either unselected27 or prescreened for genetic risk1,18,28. 
Combined assessment of both fixed and time-varying risk factors 
improves both the prediction of T1D progression in first-degree 
relatives20,21,23–25 and the accuracy of diabetes diagnoses in adult 
incident cases22. However, no T1D screening or prediction efforts 

to date have taken full advantage of the complementary informa-
tion that age, genetic risk, family history and environmental factors 
offer, when combined with autoantibody status, to estimate future 
T1D risk in all children. Such combined modeling could mark-
edly improve the prediction of T1D and other childhood diseases 
throughout early life by allowing risk assessments to reflect each 
individual’s specific age and situation.

The Environmental Determinants of Diabetes in the Young 
(TEDDY) study screened 425,000 children from the United States, 
Sweden, Germany and Finland and prospectively studied 8,676 
from birth through to 15 years of age29. Participants received fre-
quent autoantibody and exposure testing, in addition to physiologi-
cal and clinical measurements. We used TEDDY data to develop 
a model predicting T1D during the first 10 years of life. We con-
sidered features known to indicate increased T1D risk, including 
a recently published T1D genetic risk score (GRS2)30, longitudinal 
autoantibody measurements and a variety of other medical, demo-
graphic and environmental factors31. This rich dataset enabled us to 
develop a combined risk score (CRS), targeting children with high 
genetic risk, to estimate T1D risk at various landmark ages and over 
specific time horizons.

Multiple variables are predictive of childhood T1D in univariate 
analyses of TEDDY data (Extended Data Fig. 1)32,33. These include 
family history in first-degree relatives, the presence of autoantibod-
ies, T1D GRS2 (ref. 30), the weight z score at 1 year of age, sinusitis 
episodes and country of residence. By 2 years of age, autoantibod-
ies are already highly predictive, with a time-dependent area under 
the receiver operating characteristic curve (ROC AUC) of 0.75 (95% 
confidence interval = 0.71–0.78). The GRS2 alone had an AUC  
of 0.73 (0.70–0.77) despite use in a highly HLA-selected cohort 
where 94% of the TEDDY cohort had a GRS2 value in the top 20th 
percentile of a control population. We chose GRS2 because it per-
formed best in TEDDY and other datasets30 compared with similar 
GRSs (Extended Data Fig. 2 and Methods). Other T1D-associated 
variables, such as family history, weight z score, sinusitis epi-
sodes and country of residence, were less predictive (ROC AUCs  
of 0.51–0.56).
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We determined which combination of associated variables from 
Extended Data Fig. 1 best predicted future T1D at each landmark 
age using stepwise selection. Overall, a three-variable CRS incor-
porating autoantibodies, GRS2 and family history performed best 
in cross-validated time-dependent ROC AUC analysis (Fig. 1) and 
using the Akaike information criterion. ROC AUCs were all ≥0.92 
for landmarks ≥2 years and horizons up to 5 years. Compared with 
a model using all six associated variables, the three-variable model 
performed equally well (Fig. 2).

We tested whether additional variables might be eliminated from 
the three-variable CRS model. Models with GRS2 and family his-
tory outperformed GRS2 alone (Extended Data Fig. 3). We asked 
whether a three-variable CRS was better than autoantibodies alone, 
the latter being the most established approach for T1D prediction. 
The three-variable score outperformed autoantibody status alone in 
univariate Cox regression using the Akaike information criterion, 
again with higher ROC AUCs upon cross-validation (Extended 
Data Fig. 4). This effect was greatest at the landmark age of 2 years 
for all time horizons (Fig. 2a) but also was clear at the landmark age 
of 4 years for longer horizons (Fig. 2b). Nevertheless, when pres-
ent, autoantibodies conferred greater hazard ratios for T1D than 
GRS2 or family history components (Extended Data Fig. 5). The 
CRS appears to help most for children not yet with autoantibodies, 
or with only one autoantibody (right side of the ROC curve in Fig. 2 
and Extended Data Fig. 6, respectively). In TEDDY, at 2 years of age, 
38% of children subsequently developing T1D during follow-up to 
a median age of 9.3 years will have fewer than two autoantibodies.

The three-variable CRS discrimination in this cohort corre-
sponded to well-separated T1D and non-T1D populations in the 
plotted distributions of the three-variable CRS. The bimodal CRS 
distribution among future T1D cases reflects the model’s autoanti-
body term, since many already have ≥1 autoantibodies by the land-
mark age of 2 years (Fig. 3a) and even more by the age of 4 years 
(Fig. 3b). Calibration plots for the three-variable model with the 
same 2- and 4-year landmarks (Fig. 3c,d, respectively) indicate that 
an increasing CRS generally corresponds to an increasing actual 
risk of future T1D, with a mild tendency to underestimate the dis-
ease risk of children at midrange probabilities.

We generated T1D progression risk estimates for individual chil-
dren based on the three-variable T1D CRS model, using a 2-year 
landmark age (Extended Data Fig. 7). At moderately high GRS2 
(the 90th percentile of a background population using UK Biobank)  
and without family history, the risk of T1D in the next 5 years 

increases by ~14% with one autoantibody and by ~42% with two 
autoantibodies. Conversely, for a given number of autoantibodies, 
family history and GRS2 increase the risk fivefold when compar-
ing moderately high GRS2 with no family history versus very high 
GRS2 with a positive family history (Extended Data Fig. 7 and 
Supplementary Table 1).

Using TEDDY data, we modeled three population-based screen-
ing strategies in incident cases diagnosed by 10 years of age from 
among all originally screened newborns (Fig. 4). Each was adjusted 
to achieve a comparable (75%) rate of identification of very high 
risk ≥4 weeks before onset. The first classic strategy initially selected 
infants with high GRS2 genetic risk, and followed them closely 
(defined as quarterly until 3 years of age, then every 6 months until 
6 years of age, and then every year thereafter until 8 years of age). 
The second simple adaptive strategy selected infants with high 
genetic risk, followed them closely, but then recalculated the T1D 
CRS at annual landmarks. At each landmark, any child with a T1D 
probability by 10 years of age of P < 0.008 was eliminated from fur-
ther follow-up. The third advanced adaptive strategy also selected 
newborn infants at high genetic risk, but then annually recalcu-
lated the T1D CRS to reallocate children between a close follow-up 
group and a reduced follow-up group. Reallocation was based on  
a calculated T1D probability in the next 2 years of ≥0.006 or  
<0.006, respectively.

The endpoint of these prediction strategies, via the CRS, is the 
estimated percentage risk of T1D onset over the stated time hori-
zons. This guides the approach to the family regarding the risk of 
impending T1D onset in their child, the follow-up schedule for the 
child in the two adaptive strategies and consideration of prevention 
therapies. Although related, it is distinct from the more commonly 
used T1D prediction endpoint of islet autoantibodies.

Consistent with the requirements of the three-variable CRS, 
each follow-up evaluation updates the status of three autoantibod-
ies (glutamic acid decarboxylase autoantibody (GADA), insuli-
noma antigen-2 autoantibody (IA2A) and insulin autoantibody 
(IAA)) and T1D family history. We compared the total number 
of follow-up evaluations required under each strategy to achieve 
our goal of 75% advance identification of new-onset cases. Simple 
and advanced adaptive strategies utilizing the three-variable T1D 
CRS required 25 and 51% fewer surveillance evaluations, respec-
tively, compared with the standard strategy (Extended Data  
Figs. 8 and 9).

Effectively, the CRS identifies children requiring frequent evalu-
ation in order to predict impending T1D onset. This includes chil-
dren with no autoantibodies who nonetheless may be at high risk of 
early onset. For example, if children are not closely followed from 
birth to 1 year of age, ten children would not be warned before T1D 
onset, but this falls to two in ten or zero in ten using the advanced 
or simple adaptive strategies, respectively. Similarly, if only autoan-
tibody positives are followed quarterly from 1–2 years of age, with 
others followed yearly, 11 out of 36 children developing T1D during 
this year would not receive advanced warning to prevent ketoaci-
dosis. This number falls to four in 36 using the advanced adaptive 
strategy and zero in 36 for the simple adaptive strategy, representing 
important improvements at these vulnerable ages.

Our results using family history, genotyped risk and autoantibod-
ies highlight that the most accurate disease prediction—particularly 
of complex disease—will come from integration of multiple risk 
factors. This has been demonstrated in other settings (for example,  
Q risk34) but to our knowledge has not been demonstrated for a com-
plex childhood disease. It is notable that exposures such as sinusitis, 
weight and residence country33, while significant when considered 
alone, did not appear to add predictive value in a combined model. 
Using only three variables in our final model lessened the possibil-
ity of overfitting, while also minimizing information collection at 
follow-up evaluations.
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Fig. 1 | Average time-dependent ROC AUCs for the three-variable model 
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An increasing area of interest is whether the prediction of com-
mon, complex pediatric diseases can provide practical health ben-
efits at a population level. The identification of babies with rare, 
treatable diseases, such as phenylketonuria, by postnatal heel prick 
testing is commonplace in modern healthcare systems, and early 
treatment is life changing35. For T1D, the most life-threatening 
complication is diabetic ketoacidosis in the very young, which can 

lead to serious neurological complications and incurs high treat-
ment costs. The detection of islet-specific autoantibodies before 
onset allows advance warning and close monitoring, which lessens 
the incidence of diabetic ketoacidosis10–12. Successful advance warn-
ing in infants requires autoantibody surveillance to start early in life 
and to occur frequently, since progression from autoantibody posi-
tivity to hyperglycemia is most rapid in infants1,36.
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Without a genotyping component, T1D risk prediction either 
requires surveillance of too many children, or requires selection by 
family history, which misses most cases. Substituting a polygenic 
GRS for more commonly used HLA genotypes, and then combin-
ing this information with other variables into a CRS for adaptive 
surveillance, greatly improves the efficiency and therefore may 
allow reconsideration of public health-based newborn screening 
for T1D and related autoimmune diseases. In this setting, the abil-
ity of the CRS to provide accurate individual risk estimates is an 
important added benefit, although it must be carefully explained 
that not all children identified as being at high risk will develop  
childhood T1D37.

Greater precision in identifying individuals at high risk of 
impending T1D may greatly improve the cost and feasibility of early 
life intervention trials, such as those testing expensive vaccines14,38, 
by reducing the number of participants needed to appropriately 
power early-stage studies24,30. It could also lessen potential exposure 

to immunosuppressive drugs in children less likely to develop T1D. 
Finally, it opens the possibility of earlier disease mitigation before 
dysglycemia appears and when more functioning β cells remain.

Our study has several limitations. TEDDY, like many birth cohort 
studies of T1D, preselected newborns at high HLA risk in order to 
observe sufficient disease endpoints to achieve study goals. After 
removal of these HLA effects, the remaining difference in genetic 
risk is much smaller between TEDDY children who developed T1D 
and those who did not (Extended Data Fig. 10). Therefore, the CRS 
yields a lower calculated AUC ROC at landmarks <2 years of age 
(Fig. 1) than would be expected during general population use. 
In both Type 1 Diabetes Genetics Consortium and UK Biobank 
cohorts30, the GRS2 alone had an AUC ROC of >0.92 for T1D. 
This implies that a three-variable CRS incorporating GRS2 may 
have greater ROC AUCs at young ages in an unselected pediatric  
population than in TEDDY. However, validating the model in  
children with a wide range of GRS2 risk awaits the availability of 
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such a dataset. On another note, subtle abnormalities in blood 
glucose levels by a variety of measures are emerging as an impor-
tant marker of T1D progression close to diagnosis19. These are 
not typically measured in prediabetes, and were not measured in 
children lacking multiple autoantibodies in TEDDY, and so can-
not be included in our model. Also, the CRS model was less dis-
criminant among children with two or more autoantibodies. Larger 
studies with more power are needed to study this specific group 
at very young ages. Finally, the modeled genes and environmental 
features common to European and US populations may perform 
differently in other populations with distinct genetic backgrounds 
or environments. Analyses to date in other cohorts suggest that 
GRS2 should perform well in all major US ethnicities39 and that 
autoantibodies are similarly predictive in this regard40. Along these 
lines, the model validated well when tested in the TEDDY data 
from each single country using the other three countries to fit the 
model (Supplementary Table 2). However, to fully address these 
concerns, external validation in other birth cohorts is an essential  
next step.
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Methods
TEDDY participants. TEDDY is a prospective cohort study designed to  
identify environmental causes of T1D41. From 2004–2010, 424,788 newborns  
were screened at six US and European centers for high-risk HLA genotypes. 
TEDDY then enrolled 8,676 eligible infants with the intent to follow them  
until 15 years of age. The three major eligible HLA DR–DQ haplotypes are  
DR3–DQA1*0501–DQB1*0201, DR4–DQA1*0301–DQB1*0302 and  
DR8–DQA1*0401–DQB1*0402. These are referred to by their DR haplotypes 
and form the four TEDDY-eligible haplogenotypes DR3/4, DR4/4, DR4/8 and 
DR3/3. The frequencies of all eligible HLA haplogenotypes for each center have 
been published42. Historical data from the TEDDY centers suggest that ~50% of 
childhood T1D cases carry one of these four included haplogenotypes.

Follow-up. TEDDY children were followed prospectively from 3–4 months  
of age, with visits every 3 months until 4 years of age. Each evaluation tested 
the three islet antibodies (GADA, IA2A and IAA), changes in family history, as 
well as other measurements specified by the TEDDY protocol. After 4 years of 
age, children with any islet autoantibodies remained on quarterly visits, while 
antibody-negative children were evaluated every 6 months. Of 8,676 TEDDY 
enrollees, 7,798 were analyzed herein on the basis of full autoantibody testing, 
single-nucleotide polymorphism (SNP) genotyping on the ImmunoChip array,  
and carrying one of the four major TEDDY-eligible HLA haplogenotypes. At 
the time of analysis, the median follow-up was 9.3 years (range: 1–168 months; 
interquartile range: 54–132 months), covering 65,331 person-years of observation. 
Children were followed prospectively until 15 years of age or until T1D  
onset, as defined using the American Diabetes Association’s criteria for  
diagnosis41. In this dataset, 305 children developed T1D. Local Institutional  
Review Board approval, parental informed consent, and child assent where 
relevant, were obtained for all participants without exception. The study  
was also monitored by an External Evaluation Committee of the US  
National Institutes of Health. More details can be found in the Life Sciences 
Reporting Summary.

TEDDY study measurements. The TEDDY study measures a wide range of 
background information and environmental exposures on the cohort. Background 
information includes self-reported race and ethnicity, geographic residence 
country and TEDDY clinical center. TEDDY registers family history of T1D in 
the mother, father or sibling. Medical history includes pregnancy factors such as 
infections and cesarean section, and childhood factors such as medications and 
illnesses. Parental questionnaires captured incidences of the child’s febrile illnesses, 
respiratory infections (common cold, sinus infection, ear infection, bronchitis and 
pneumonia) and gastrointestinal infections43. Serum collected at each clinic visit 
was analyzed for the presence of autoantibodies to GADA, IA2A and IAA in two 
separate core laboratories using harmonized radiobinding assays incorporating 
extensive quality control44. Only persistent autoantibodies positive for the same 
antigen, as confirmed by both core laboratories in two consecutive samples, were 
considered in the current analyses.

Generation of the T1D GRS. TEDDY cohort children were genotyped on an 
Illumina Infinium ImmunoChip SNP array45. Before imputation, we performed 
SNP variant quality control filtering on SNP genotype missingness (<1%), 
Hardy–Weinberg equilibrium (P < 1 × 10−6) and minor allele frequency (<1%). For 
variants in HLA (chromosome 6: 27–35 megabase pairs), due to the HLA-based 
cohort selection42, we omitted Hardy–Weinberg equilibrium-based filtering in 
order to retain key variants. Sample quality control checks for sex discordance, 
individual genotype missingness (<1%) and principal component analysis resulted 
in the exclusion of 85 subjects. After quality control, 167,350 SNPs and 7,798 
individuals were available for analysis. The ImmunoChip data were then imputed 
to the 1000 Genomes reference panel, yielding 37.1 million SNPs at an imputation 
quality of >0.8. Independent of this TEDDY dataset, we have described three T1D 
GRSs: our original 30-SNP T1D GRS22; the 40-SNP combined TEDDY GRS21; and 
a recently published more comprehensive 67-SNP T1D GRS2 (ref. 30). The latter 
was newly generated in TEDDY for this analysis. Most of the GRS2 SNPs were 
genotyped directly, but 21 were imputed with r2 ≥ 0.75 and four were imputed 
with r2 = 0.358–0.544 (Supplementary Table 3). These SNP genotypes were used to 
generate continuous numerical risk score values for GRS2.

Variable selection. A broad list of features were evaluated for potential use in a 
CRS. We evaluated whether incorporating features that change in an individual 
over time (for example, the development of autoantibodies), along with fixed 
characteristics such as GRS, could improve the prediction of future T1D risk. 
Evaluations used time-dependent ROC AUC and P values (two-sided Wald test) 
computed at a landmark age of 2 years and a horizon of 8 years on n = 6,805 
individuals. All were required to be available in a typical clinical setting, such 
as initial genetic screening for a panel of SNP markers followed by a standard 
blood sample and medical history during each follow-up evaluation. To reduce 
the chance of false discovery and overfitting, we also required each variable to 
be previously established as associated with T1D in published TEDDY analyses 
and in the background literature (Extended Data Fig. 1). The numbers of diabetic 

and nondiabetic children in each of these variable categories are shown in 
Supplementary Table 3.

Simplification of risk factors. We combined information on T1D in a sibling, 
father or mother to create a single ‘any first-degree relative with T1D’ variable 
denoted family history. Likewise, we combined the GADA, IA2A and IAA 
variables to create a single variable representing the number of persistent islet 
autoantibodies. We then compared the model performance using each summary 
variable versus that using all of the corresponding fully detailed variables.  
The summary variables, family history and autoantibodies were each equally as 
informative as their individual components (data not shown). T1D GRS2 (ref. 30) 
outperformed previous GRSs used in TEDDY21 and elsewhere22 at all landmarks 
and for horizon time prediction, with an average univariate AUC of 0.73 versus 
0.63 (Extended Data Fig. 2) using n = 7,798 individuals. Therefore, only GRS2  
was considered in our modeling, which left us with six variables to consider  
(family history, autoantibodies, GRS2, weight z score, sinusitis episodes and 
residence country).

CRS model construction. We used an approach where CRS generation occurred 
at fixed time points at and after birth, using all of the information available up 
to that time. Participants were assumed negative for islet autoantibodies at birth 
based on extrapolation from published TEDDY incidence data46. The score was 
revised at each later time point as information became updated. This approach has 
been termed landmarking47,48 and takes advantage of the TEDDY study design, 
where risk factors are measured repeatedly in an individual at different time points 
during childhood. Only patients without T1D at the landmark age of interest 
are included in analyses. The visit was assigned to occur at the formal visit age 
if it complied with the protocol-approved visit window. Selected landmark ages 
were at different visit times: birth and then 1, 1.5, 2, 3, 4, 5, 6 and 7 years of age, 
representing nine different models. Another important feature of survival analyses 
is the future prediction time interval after the landmark, termed the horizon time. 
The numbers of children at each landmark age were: 7,798 (birth), 7,563 (1 year), 
7,123 (1.5 years), 6,805 (2 years), 6,316 (3 years), 5,973 (4 years), 5,706 (5 years), 
5,517 (6 years) and 5,323 (7 years). For example, a landmark at 2 years and horizon 
time of 5 years means that we aim to predict whether a child will develop T1D by 
age 7 years using a CRS generated on a nondiabetic child at 2 years of age. Horizon 
times used in this study were 1, 3, 5 and 8 years.

The CRSs were generated using a Cox regression model. Our goal was to 
maximize the predictive accuracy while minimizing the number of variables 
required. We initially selected variables that were independently significant using 
the Wald test49. At each landmark, we sought to find the best combination of 
variables to predict T1D, by performing bidirectional stepwise selection with the 
Bayesian information criterion50.

Model evaluation. Since TEDDY is a prospective cohort study where participants 
progress to T1D over time and are subject to censoring, time dependency must be 
incorporated into the predictive assessment of the CRS. We used time-dependent 
analysis of ROC AUC to evaluate model performance at the various landmark 
ages and horizon times. We used threefold cross-validation (repeated ten times) 
to assess model precision and to reduce overestimation of model performance. To 
compare models, we used the R timeROC package developed by Blanche et al.51. 
Overall, we selected a set of variables that gave optimal prediction at the various 
landmarks and horizon times according to the best average AUC derived by 
cross-validation.

Screening simulation. We compared a strategy of selecting high-risk children 
from birth and following them all, irrespective of their changing probability 
of T1D (classic strategy), versus two strategies that allowed us to either stop 
(simple adaptive) or modulate (advanced adaptive) later follow-up visits in those 
individuals with a lower probability of T1D. Our goal was to test whether we  
could detect in advance the same number of childhood T1D cases (75%) with 
fewer follow-up visits using one of the latter strategies. The three strategies are 
detailed in Fig. 4.

We used UK Biobank to estimate, for initial newborn screening, T1D GRS2 
cut-off values, which achieved various targets for the proportion of future cases 
included in the initially followed cohort. This is described in the first table in the 
published description of the GRS2 (ref. 30). These specific target proportions were 
matched to the specific sensitivities of the follow-up performance of each overall 
strategy, to achieve a net 75% pre-onset case detection.

For follow-up, our baseline schedule comprised quarterly evaluations through 
3 years of age, then every 6 months until 6 years of age, and then annually thereafter. 
This strategy was chosen because TEDDY included samples at each of these ages, 
and for the TEDDY cohort, using this schedule missed very few children. In 
TEDDY, all high-risk children remain in follow-up. This schedule misses very few 
children, with a median of 51 d (interquartile range: 84–18.5 d; range: 1–384 d) 
from the last visit to T1D presentation.

The classic strategy used this baseline follow-up schedule. The simple adaptive 
strategy also used the baseline follow-up schedule in all children remaining in 
follow-up. The advanced adaptive strategy used the baseline follow-up strategy for 
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those children in the close follow-up subgroup, but annual follow-up for those in 
the reduced follow-up subgroup. Each follow-up strategy was simulated separately 
over the TEDDY dataset. We compensated for right censoring in TEDDY data by 
using an inverse weighting estimator.

The optimum cut-offs for initial genetic inclusion and for retention or 
reassignment in the surveillance group were chosen using a grid optimization. 
We selected the cut-off among the values from 0.001–0.010 with steps of 0.001 
to determine the optimum value, defined as that minimizing the number of 
follow-up evaluations while ensuring that 75% of the population cases had an 
adequate follow-up. Optimization was performed independently for each design 
strategy. For the simple adaptive strategy, it led to a CRS landmark cut-off of 
T1D probability of ≥0.6% (up to 10 years of age) for continued follow-up, which 
required 10.7% of the screened newborn population to be included in the initially 
followed cohort. For the advanced adaptive strategy, it led to a CRS landmark 
cut-off of T1D probability (within 2 years) of ≥0.8% for assignment to the 
frequently followed subgroup, which required 11.2% of screened newborns to be 
included in the initially followed cohort. Summary statistics of each strategy are 
shown in Extended Data Fig. 8.

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
Clinical metadata and GRS genotyping data analyzed for this study are  
available in the NIDDK Central Repository at https://www.niddkrepository.org/
studies/teddy, in accordance with the NIDDK’s controlled-access authorization 
process.

Code availability
The R code used in these analyses is available in the NIDDK Central Repository at 
https://www.niddkrepository.org/studies/teddy, in accordance with the NIDDK’s 
controlled-access authorization process.
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Extended Data Fig. 1 | Variables previously shown or susceptible to be associated with T1D auto-immunity evaluated in univariate analysis. Time ROC 
AUC and p-value (two side Wald test) are computed at landmark age 2 years and horizon of 8 years (n = 6,805). Abbreviations: Type 1 diabetes (T1D), 
Family history (FH), Islet Autoantibodies (AB), insulinoma Antigen-2 Autoantibody (IA2A), Glutamic Acid Decarboxylase Autoantibody (GADA), Insulin 
AutoAntibody (IAA), Genetic Risk score (GRS2). The referent sex is female. A concise list of references for this table is provided in the Supplementary 
Information file associated with this paper.
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Extended Data Fig. 2 | Time dependent ROC curves comparing the performance of various genetic risk scores in the TEDDY cohort. Shown are curves 
for GRS1, GRS2 and the combined TEDDY GRS to predict T1D from a landmark age of birth and a horizon interval of 8 years (n= 7,798).
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Extended Data Fig. 3 | Family history adds predictive power to the T1D GRS2. T1D GRS2 alone (a) is compared to T1D GRS2 + FH (b) at nine different 
landmark scoring ages and over four different horizon times. Although 95% confidence intervals always overlapped, among 34 total combinations, T1D 
GRS2 + FH gave a larger AUC ROC in 24 of these combinations. Results were similar in 9 combinations, and in only one instance was T1D GRS2 better. 
T1D GRS2 + FH superiority was greatest at landmarks ≤3 years of age. The number of children at each landmark age were 7798 (birth), 7563 (1 year), 
7123 (1.5 years), 6805 (2 years), 6316 (3 years), 5973 (4 years), 5706 (5 years), 5517 (6 years) and 5323 (7 years).
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Extended Data Fig. 4 | T1D GRS2 and family history add predictive power to AB. AB alone (a) is compared to the three-variable model of AB, GRS2 and 
FH. (b) at eight different landmark scoring ages and over four different horizon times. Although 95% confidence intervals overlapped, among 30 total 
combinations, the three-variable model yielded larger AUC ROC in 28 of these combinations and similar results in the remaining 2 combinations. The 
differences were often substantial, especially at landmarks ≤4 years of age. The number of children at each landmark age were 7798 (birth), 7563 (1 
year), 7123 (1.5 years), 6805 (2 years), 6316 (3 years), 5973 (4 years), 5706 (5 years), 5517 (6 years) and 5323 (7 years).
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Extended Data Fig. 5 | Hazard ratio for each variable at different ages at prediction scoring landmarks. Each point represents the hazard ratio at a 
landmark age (x abscises), the shaded region its respective 95% confidence interval. The number of children at each landmark age were 7798 (birth), 
7563 (1 year), 7123 (1.5 years), 6805 (2 years), 6316 (3 years), 5973 (4 years), 5706 (5 years), 5517 (6 years) and 5323 (7 years).
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Extended Data Fig. 6 | Time dependent ROC of different models now considering only children positive for at least one AB (n = 252). The landmark age 
is 2 years. At the 3 year time horizon the CRS (AB+GRS2+FH) performs similarly to AB only, but at the 8 year horizon the CRS is more predictive.
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Extended Data Fig. 7 | Individual estimated future T1D risk probability percentages (and 95% confidence intervals) for 24 different scenarios 
combining a GRS risk level and FH background with different AB status calcluated at age 2 years. “++” represents a T1D genetic risk score at 80th 
percentile of the general (UK) population. “+++” represents a T1D genetic risk score at 90th percentile of the general (UK) population. “++++” represents 
a T1D genetic risk score at 99th percentile of the general (UK) population.

Nature Medicine | www.nature.com/naturemedicine

http://www.nature.com/naturemedicine


LettersNature Medicine

Extended Data Fig. 8 | Comparison of newborn screening strategies aiming to predict ≥75% of the children who will develop T1D before age 10. In the 
“Classic” design, the 9.3% of screened newborn population containing 75% of the T1D cases, are all followed for 10 years. In the “Simple Adaptive” design, 
10.7% of the screened newborns containing 79.8% of the T1D cases, are followed for variable lengths determined by CRS-based risk, and 4.8% of T1D 
cases miss AB detection before onset, leaving 75% detected in advance. In the “Advanced Adaptive” design, 11.2% of the screened newborns containing 
81.6 % of T1D cases are followed closely or less closely determined by CRS-based risk, 6.6% of cases miss AB detection before onset, again leaving 
75% detected. Numbers are computed by using the performance of each strategy on TEDDY data. Tests per child are computed using TEDDY data and 
simulation to take into account right censoring in TEDDY data.
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Extended Data Fig. 9 | Visit number calculation for each design. Table A. Visit number calculations for the “Classic” design. Infants initially selected for 
high. GRS2 genetic risk were all followed quarterly until age 3, and every 6 months until age 6, then annually thereafter. This simulation was made on the 
TEDDY dataset. Table B. Visit number calculations for the “Simple Adaptive” design. Infants selected for high genetic risk were initially followed as in the 
Classic strategy, but the T1D CRS was recalculated at annual landmarks, at which time any child whose T1D probability by age 10 had decreased to <0.8% 
was eliminated from further follow-up. Of new cases, 94% had high risk detected before onset. This simulation was made on the TEDDY dataset. Table 
C. Visit number calculations for the “Advanced Adaptive” design. Infants selected for high genetic risk were initially followed as in the Classic strategy, but 
at birth and annually thereafter, a T1D CRS calculation was used to reallocate children among the quarterly or annual surveillance groups based on T1D 
probability in 2 years of ≥0.6% or <0.6%, respectively. Of new cases, 92% had high risk detected before onset. Simulation made on the TEDDY dataset.
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Extended Data Fig. 10 | GRS2 violin plot in the Type 1 Diabetes Genetics Consortium (T1DGC) and TEDDY datasets. T1DGC is more representative of 
the general background population. The genetic pre- selection in TEDDY based on the major T1D risk locus HLA-DR-DQ, renders the T1D GRS2 higher 
in TEDDY, even in T1D free subjects. Further, the separation between T1D and non-T1D subjects in TEDDY is much less. There are 7,798 observations in 
TEDDY including 305 with T1D. There are 15729 observations in T1DGC including 6483 with T1D. The lines in the violin plots respectively indicate the 25th, 
50th and 75th percentiles, while the lowest and the highest point of each violin plot indicates the minimum and the maximum, respectively, for each group 
of individuals.
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Life sciences study design
All studies must disclose on these points even when the disclosure is negative.

Sample size Out of 8,676 TEDDY enrollees, 7,883 were analyzed herein on the basis of full AB testing, SNP genotyping on the ImmunoChip array, and 
carrying one of the four major TEDDY eligible HLA haplogenotypes. At the time of analysis, median follow-up was 9.3 years (range 1-168 
months, interquartile range [IQR] 54 to 132 months) covering 65,331 person-years of observation. 305 children developed T1D. No sample 
size calculation was performed for this particular study but the Data set TEDDY was designed to follow up enough children to ensure a good 
sample size for a variety of studies.

Data exclusions The exclusion criteria were pre-establised; Children with poor quality genotyping data based on missingness or mismatched sex. After quality 
control 7,798 individuals were available for 
analysis.

Replication Observational cohort. No replication.

Randomization Not relevant for the aims of this observational study.

Blinding TEDDY is an observational follow-up study, thus no overall blinding was used.

Reporting for specific materials, systems and methods
We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material, 
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response. 

Materials & experimental systems
n/a Involved in the study

Antibodies

Eukaryotic cell lines

Palaeontology

Animals and other organisms

Human research participants

Clinical data

Methods
n/a Involved in the study

ChIP-seq

Flow cytometry

MRI-based neuroimaging

Human research participants
Policy information about studies involving human research participants

Population characteristics Children samples were obtained from six geographical locations (Finland, Germany, Sweden in Europe; and Washington State, 
Colorado and Georgia in the United States). These children were selected to be at high HLA genetic risk for developing T1D.

Recruitment Children were recruited based on specific type 1 diabetes risk human leukocyte antigen (HLA) genotypes and/or family history of 
T1D risk. Recruitment began in September of 2004 and was completed in February 2010. Six clinical centers took part. Three 
were in the USA (Colorado, Washington State and Florida/Georgia) and 3 in Europe (Germany, Sweden, and Finland).  N=424,788 
newborns were randomly screened at birth in hospitals in all centers, of which 418,367 were general population infants and 
6,421 were first-degree relatives (FDR) of a family member with type 1 diabetes. N=20,152 general population and 1,437 FDR  
were HLA eligible. The latter represent about half of the subjects within the originally screened cohort who would be expected to 
develop type 1 diabetes, but are all among the future diabetes patients with the greatest HLA risk. This HLA bias is considered in 
the main text.  A total of 7,709 general population children (38%) and 967 FDR children (67%) had parents who consented to 
enrollment in the follow-up surveillance study. There was a bias towards FDR participation, since these families may be more 
motivated towards diabetes research. Ethnicity differed between sites, with more African-background participants in Georgia, 
more Hispanic participants in Colorado and more Asian participants in Seattle. At all these sites, participation in follow-up was 
greater among non-Hispanic Whites. European sites were not allowed to collect race or ethicity data. TEDDY placed significant 
study burden on participants, and there may be an unmeasurable bias that people likely to complete the study had a greater 
interest in a healthy lifestyle, or that they may be of a higher socioeconomic status, than those choosing not to participate. 
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Ethics oversight The samples and clinical information at all clinical sites were in all cases obtained under IRB or local ethics board approval, in all 

cases using informed consent, and also with the initial and ongoing approval of a study-specific National Institute of Diabetes and 
Digestive and Kidney Diseases External Evaluation Committee.

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Clinical data
Policy information about clinical studies
All manuscripts should comply with the ICMJE guidelines for publication of clinical research and a completed CONSORT checklist must be included with all submissions.

Clinical trial registration NCT00279318

Study protocol Full protocol can be accessed at https://teddy.epi.usf.edu/documents/TEDDY_Protocol.pdf.

Data collection Six clinical research centers - three in the U.S. (Colorado, Georgia/Florida, Washington State), and three in Europe (Finland, 
Germany, and Sweden) participated in a population-based HLA screening of newborns between 2004 and 2010. Families with 
children with high risk HLA genotypes were invited to enroll in follow-up, and n=8,676 did this. They were then prospectively 
followed from three months of age until either developing type 1 diabetes (T1D) or until an intended age of 15 years old, with 
study visits that included a blood draw every 3 months until 4 years of age, and every 3 or 6 months thereafter for islet 
autoantibody positive or negative subjects, respectively. Stool samples were collected monthly from ages 3-48 months and then 
quarterly until age 10 years.

Outcomes T1D diagnosis was defined according to American Diabetes Association criteria.
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Auto-­‐

antibody	
  
status	
  

Genetic	
  
risk	
  

Family	
  
history	
  

1	
  year	
  
horizon	
  

3	
  year	
  	
  
horizon	
  

5	
  year	
  
horizon	
  

Sensitivity	
   Specificity	
   Sensitivity	
   Specificity	
   Sensitivity	
   Specificity	
  

0	
   ++	
   No	
   100	
   5.8	
   100	
   5.8	
   100	
   5.8	
  

0	
   ++	
   Yes	
   100	
   33.8	
   98.8	
   33.8	
   98.4	
   33.9	
  

0	
   +++	
   No	
   100	
   17.6	
   100	
   17.7	
   100	
   17.7	
  

0	
   +++	
   Yes	
   97.8	
   57.3	
   95.3	
   57.4	
   93.6	
   57.7	
  

0	
   ++++	
   No	
   97.8	
   76.9	
   91.8	
   77.3	
   87.9	
   77.5	
  

0	
   ++++	
   Yes	
   87.0	
   93.9	
   85.1	
   94.2	
   78.6	
   94.6	
  

1	
   ++	
   No	
   80.3	
   96.5	
   80.5	
   96.9	
   75.5	
   97.3	
  

1	
   ++	
   Yes	
   80.3	
   97.0	
   78.1	
   97.3	
   73.1	
   97.7	
  

1	
   +++	
   No	
   80.3	
   96.7	
   80.5	
   97.1	
   75.5	
   97.5	
  

1	
   +++	
   Yes	
   76.0	
   97.4	
   73.6	
   97.8	
   69.3	
   98.2	
  

1	
   ++++	
   No	
   73.7	
   97.8	
   71.2	
   98.2	
   66.9	
   98.6	
  

1	
   ++++	
   Yes	
   58.6	
   98.5	
   58.9	
   98.8	
   58.7	
   99.2	
  

2	
   ++	
   No	
   76.0	
   97.5	
   73.6	
   97.8	
   69.3	
   98.2	
  

2	
   ++	
   Yes	
   67.2	
   98.2	
   66.8	
   98.6	
   63.9	
   99.0	
  

2	
   +++	
   No	
   73.7	
   97.9	
   71.2	
   98.3	
   66.9	
   98.6	
  

2	
   +++	
   Yes	
   54.1	
   98.6	
   51.9	
   98.9	
   54.1	
   99.3	
  

2	
   ++++	
   No	
   41.2	
   99.0	
   34.8	
   99.2	
   40.4	
   99.6	
  

2	
   ++++	
   Yes	
   13.3	
   99.6	
   9.0	
   99.7	
   11.8	
   99.8	
  

3	
   ++	
   No	
   67.2	
   98.1	
   66.8	
   98.4	
   63.9	
   98.8	
  

3	
   ++	
   Yes	
   49.8	
   98.9	
   42.7	
   99.1	
   46.4	
   99.4	
  

3	
   +++	
   No	
   58.6	
   98.5	
   58.9	
   98.8	
   58.7	
   99.2	
  

3	
   +++	
   Yes	
   36.8	
   99.2	
   31.4	
   99.3	
   36.5	
   99.6	
  

3	
   ++++	
   No	
   21.9	
   99.5	
   18.0	
   99.6	
   20.2	
   99.7	
  

3	
   ++++	
   Yes	
   4.5	
   100	
   2.3	
   99.9	
   2.3	
   100	
  
	
  

Supplementary	
  Table	
  1.	
  Sensitivity	
  and	
  specificity	
  given	
  future	
  T1D	
  risk	
  probabilities	
  for	
  24	
  
different	
  scenarios	
  combining	
  GRS	
  and	
  FH	
  risk	
  levels	
  with	
  different	
  AB	
  status	
  for	
  2-­‐year-­‐old	
  
children.	
  	
  	
  “++”	
  represents	
  a	
  genetic	
  risk	
  score	
  at	
  80th	
  percentile	
  of	
  the	
  general	
  (UK)	
  population.	
  	
  
	
   	
  	
  	
  	
  	
  “+++”	
  represents	
  a	
  genetic	
  risk	
  score	
  at	
  90th	
  percentile	
  of	
  the	
  general	
  (UK)	
  population.	
  	
  
	
   	
  	
  	
  	
  	
  “++++”	
  represents	
  a	
  genetic	
  risk	
  score	
  at	
  99th	
  percentile	
  of	
  the	
  general	
  (UK)	
  population.	
  	
  
	
  

The	
  cut-­‐offs	
  used	
  for	
  sensitivity	
  and	
  specificity	
  for	
  analyses	
  were	
  the	
  CRS	
  given	
  for	
  the	
  value	
  of	
  AB,	
  
GRS2	
  and	
  FH	
  described	
  in	
  the	
  first	
  3	
  columns.	
  The	
  CRS	
  is	
  given	
  by	
  the	
  linear	
  part	
  of	
  the	
  hazard	
  
function	
  of	
  the	
  Cox	
  proportional	
  hazard	
  model,	
  which	
  has	
  the	
  form	
  λ(t)e!!!,	
  where	
  X!	
  represent	
  
the	
  values	
  of	
  the	
  number	
  of	
  AB,	
  GRS2	
  and	
  FH	
  of	
  an	
  individual	
  i	
  and	
  B	
  are	
  the	
  parameters	
  of	
  the	
  
model	
  estimated	
  when	
  fitting	
  the	
  model.	
  The	
  CRS	
  of	
  the	
  individual	
  i  is	
  equal	
  to	
  X!B.	
  



	
  
	
  
	
  
Horizon	
  
time	
  

Original	
  	
  
(cross	
  
validation)	
  

Fitted	
  on	
  
others;	
  tested	
  
on	
  Finland	
  

Fitted	
  on	
  
others;	
  tested	
  
on	
  Germany	
  	
  

Fitted	
  on	
  
others;	
  tested	
  
on	
  Sweden	
  

Fitted	
  on	
  
others;	
  tested	
  
on	
  USA	
  

1	
  year	
   0.96	
   0.95	
   0.91	
   0.94	
   0.94	
  
3	
  years	
   0.94	
   0.94	
   0.96	
   0.91	
   0.94	
  
5	
  years	
   0.93	
   0.92	
   0.96	
   0.91	
   0.93	
  
8	
  years	
   0.87	
   0.84	
   0.95	
   0.87	
   0.86	
  
	
  
Supplementary	
  Table	
  2.	
  Summary	
  of	
  AUC	
  ROC	
  results	
  for	
  2-­‐year	
  landmark,	
  fitted	
  on	
  three	
  
countries	
  to	
  predict	
  on	
  the	
  fourth.	
  
	
  



variable	
   	
   non T1D (7493)	
   T1D (305)	
  

Country	
  

USA	
   3143	
   103	
  

Finland	
   1612	
   89	
  

Germany	
   507	
   28	
  

Sweden	
   2231	
   85	
  

First degree relative with T1D	
  
no	
   6691	
   221	
  

yes	
   802	
   84	
  

Mother T1D	
  
no	
   7214	
   283	
  

yes	
   279	
   22	
  

Father T1D	
  
no	
   7131	
   260	
  

yes	
   362	
   45	
  

Siblings T1D	
  
no	
   7381	
   280	
  

yes	
   112	
   25	
  

HLA genotype	
  

other	
   340	
   17	
  

DR4/DR3	
   2835	
   166	
  

DR4/DR4	
   1464	
   55	
  

DR4/DR8	
   1277	
   42	
  

DR3/DR3	
   1577	
   25	
  

Sex	
  
Female	
   3684	
   148	
  

Male	
   3809	
   157	
  

Caesarean section	
  
no	
   5542	
   223	
  

yes	
   1951	
   82	
  
	
  
Supplementary	
  Table	
  3	
  Numbers	
  of	
  T1D	
  and	
  non-­‐T1D	
  children	
  in	
  the	
  cohort	
  by	
  model	
  variable.	
  
	
   	
  



	
  

Chromosome	
   SNP	
   Locus	
   MAF	
   Minor	
  
allele	
  

Major	
  
allele	
   r2	
  

1	
   rs2476601	
   PTPN22	
   0.1083	
   A	
   G	
   Genotyped	
  
1	
   rs3024505	
   PTPN22	
   0.1509	
   A	
   G	
   Genotyped	
  
2	
   rs3087243	
   CTLA4	
   0.3982	
   A	
   G	
   Genotyped	
  
2	
   rs2111485	
   IFIH1	
   0.4118	
   A	
   G	
   Genotyped	
  
4	
   rs17388568	
   ADAD1	
   0.3064	
   A	
   G	
   Genotyped	
  
6	
   rs9259118	
   HLA-­‐A*0301	
   0.1268	
   T	
   C	
   0.943852	
  
6	
   rs1281934	
   Intergenic	
  DRB1-­‐DQA1	
   0.0039	
   G	
   A	
   0.544	
  
6	
   rs12153924	
   HLA-­‐A*0201	
   0.3001	
   A	
   G	
   0.979	
  
6	
   rs9500974	
   HLA-­‐A*0205	
   0.006	
   T	
   G	
   Genotyped	
  
6	
   rs72848653	
   HLA-­‐A*24	
   0.0686	
   T	
   C	
   0.915	
  
6	
   rs144530872	
   HLA-­‐A*29	
   0.016	
   A	
   G	
   0.959	
  
6	
   rs371250843	
   HLA-­‐B*18	
   0.0463	
   T	
   TG	
   0.996	
  
6	
   rs540653847	
   HLA-­‐B*3906	
   0.0073	
   GC	
   G	
   0.808	
  
6	
   rs2524277	
   HLA-­‐B*44	
   0.0104	
   A	
   G	
   Genotyped	
  
6	
   rs16899379	
   HLA-­‐B*45	
   0.0025	
   A	
   G	
   0.933	
  
6	
   rs149663102	
   HLA-­‐B*57	
   0.010	
   T	
   TG	
   0.994	
  
6	
   rs12189871	
   HLA-­‐C*06	
   0.033	
   T	
   C	
   Genotyped	
  
6	
   rs17211699	
   HLA-­‐DQ2.2	
   0	
   T	
   C	
   -­‐	
  
6	
   rs9273369	
   HLA-­‐DQ2.5	
   0.4008	
   C	
   T	
   Genotyped	
  
6	
   rs12527228	
   HLA-­‐DQ4.2	
   0.0814	
   T	
   C	
   0.981	
  
6	
   rs10947332	
   HLA-­‐DQ5.1	
   0.1088	
   A	
   G	
   Genotyped	
  
6	
   rs1794265	
   HLA-­‐DQ5.3	
   0	
   A	
   C	
   -­‐	
  
6	
   rs117806464	
   HLA-­‐DQ6.1	
   0	
   A	
   G	
   -­‐	
  
6	
   rs17843689	
   HLA-­‐DQ6.2	
   0	
   C	
   T	
   -­‐	
  
6	
   rs62406889	
   HLA-­‐DQ6.3	
   0	
   T	
   G	
   -­‐	
  
6	
   rs16822632	
   HLA-­‐DQ6.9	
   0	
   A	
   G	
   -­‐	
  
6	
   rs1281935	
   HLA-­‐DQ7.3	
   0	
   T	
   G	
   -­‐	
  
6	
   rs9469200	
   HLA-­‐DQ7.5	
   0	
   C	
   T	
   -­‐	
  
6	
   rs7454108	
   HLA-­‐DQ8.1	
   0.4878	
   G	
   A	
   Genotyped	
  
6	
   rs28746898	
   HLA-­‐DQ9.2	
   0	
   G	
   A	
   -­‐	
  
6	
   rs9405117	
   HLA-­‐DQ9.3	
   0.0073	
   A	
   C	
   0.358	
  
6	
   rs9271346	
   XL9	
  Regulatory	
   0.0011	
   C	
   T	
   0.892	
  
6	
   rs2567287	
   HLA-­‐DPB1*1501	
   0.0086	
   A	
   G	
   0.998	
  
6	
   rs9378176	
   HLA-­‐DPB1*0501	
   0.0154	
   G	
   A	
   0.999	
  
6	
   rs75658393	
   Intergenic	
  BTNL2-­‐DRA1	
   0.0318	
   C	
   T	
   0.992	
  
6	
   rs9269173	
   Intergenic	
  DRA1-­‐DRB1	
   0.0528	
   A	
   T	
   0.977	
  
6	
   rs116522341	
   BTNL2	
   0.061	
   G	
   C	
   0.791	
  



6	
   rs6934289	
   HLA-­‐DPB1*0402	
   0.1117	
   C	
   T	
   0.998	
  
6	
   rs17214657	
   HLA-­‐DPB1*0101	
   0.1346	
   C	
   T	
   Genotyped	
  
6	
   rs72928038	
   BACH2	
   0.1573	
   A	
   G	
   Genotyped	
  
6	
   rs559242105	
   DPB1*0301	
   0.1583	
   CTA	
   C	
   0.944	
  
6	
   rs1738074	
   TAGAP	
   0.4308	
   T	
   C	
   Genotyped	
  
6	
   rs9388489	
   CENPW	
   0.4641	
   G	
   A	
   Genotyped	
  
7	
   rs4948088	
   COBL	
   0.0457	
   A	
   C	
   Genotyped	
  
9	
   rs6476839	
   GLIS3	
   0.4213	
   A	
   T	
   Genotyped	
  
10	
   rs41295121	
   IL2RA	
   0.0092	
   T	
   C	
   Genotyped	
  
10	
   rs61839660	
   IL2RA	
   0.0745	
   T	
   C	
   Genotyped	
  
10	
   rs60888743	
   RNLS	
   0.25	
   G	
   A	
   0.998	
  
11	
   rs3842753	
   INS	
   0.254	
   T	
   G	
   0.968	
  
12	
   rs11170466	
   ITGB7	
   0.0635	
   T	
   C	
   0.466	
  
12	
   rs4759229	
   ERBB3	
   0.3286	
   A	
   G	
   Genotyped	
  
12	
   rs653178	
   ATXN2	
   0.4486	
   C	
   T	
   Genotyped	
  
12	
   rs10492166	
   CLEC1	
   0.4889	
   A	
   G	
   Genotyped	
  
13	
   rs9585056	
   IRF7	
   0.2507	
   C	
   T	
   Genotyped	
  
14	
   rs56994090	
   MEG3	
   0.4421	
   C	
   T	
   Genotyped	
  
15	
   rs2289702	
   CTSH	
   0.1026	
   T	
   C	
   0.988	
  
15	
   rs72727394	
   RASGRP1	
   0.2064	
   T	
   C	
   Genotyped	
  
16	
   rs9924471	
   CCDC101	
   0.145	
   A	
   G	
   Genotyped	
  
16	
   rs12708716	
   CLEC16A	
   0.3349	
   G	
   A	
   Genotyped	
  
18	
   rs1893217	
   PTPN2	
   0.1612	
   G	
   A	
   Genotyped	
  
18	
   rs1615504	
   CD226	
   0.4821	
   T	
   C	
   Genotyped	
  
19	
   rs144309607	
   TYK2	
   0.007	
   T	
   C	
   0.514	
  
19	
   rs425105	
   PRKD2	
   0.1585	
   C	
   T	
   Genotyped	
  
20	
   rs2281808	
   SIRPG	
   0.3306	
   T	
   C	
   0.996	
  
21	
   rs9981624	
   UBASH3A	
   0.3277	
   G	
   C	
   Genotyped	
  
22	
   rs5763779	
   HORMAD2	
   0.3403	
   A	
   G	
   Genotyped	
  
22	
   rs229541	
   C1QTNF6	
   0.4207	
   A	
   G	
   Genotyped	
  

	
  
	
  

Supplementary	
  Table	
  4.	
  The	
  67	
  SNPs	
  used	
  in	
  the	
  T1D	
  GRS2	
  with	
  their	
  Minor	
  Allele	
  Frequency	
  
(MAF)	
  in	
  this	
  cohort,	
  and	
  when	
  not	
  genotyped	
  directly,	
  the	
  imputation	
  score	
  r2.	
  Note	
  that	
  a	
  
total	
  of	
  8	
  SNPs	
  from	
  the	
  published	
  GRS2	
  mark	
  HLA-­‐DQ	
  haplotypes	
  are	
  not	
  present	
  in	
  this	
  
cohort,	
  and	
  their	
  MAFs	
  are	
  therefore	
  each	
  shown	
  as	
  0.”	
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